Cargando…
An Efficient and Flexible Method for Deconvoluting Bulk RNA-Seq Data with Single-Cell RNA-Seq Data
Estimating cell type compositions for complex diseases is an important step to investigate the cellular heterogeneity for understanding disease etiology and potentially facilitate early disease diagnosis and prevention. Here, we developed a computationally statistical method, referring to Multi-Omic...
Autores principales: | Sun, Xifang, Sun, Shiquan, Yang, Sheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6830085/ https://www.ncbi.nlm.nih.gov/pubmed/31569701 http://dx.doi.org/10.3390/cells8101161 |
Ejemplares similares
-
Effective methods for bulk RNA-seq deconvolution using scnRNA-seq transcriptomes
por: Cobos, Francisco Avila, et al.
Publicado: (2023) -
Semi-deconvolution of bulk and single-cell RNA-seq data with application to metastatic progression in breast cancer
por: Lei, Haoyun, et al.
Publicado: (2022) -
EPISCORE: cell type deconvolution of bulk tissue DNA methylomes from single-cell RNA-Seq data
por: Teschendorff, Andrew E., et al.
Publicado: (2020) -
SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
por: Peng, Tao, et al.
Publicado: (2019) -
Deciphering Tumour Microenvironment of Liver Cancer through Deconvolution of Bulk RNA-Seq Data with Single-Cell Atlas
por: Zhang, Shaoshi, et al.
Publicado: (2022)