Cargando…
UPLC-MS/MS-based metabolomic characterization and comparison of pancreatic adenocarcinoma tissues using formalin-fixed, paraffin-embedded and optimal cutting temperature-embedded materials
The purpose of the present study was to compare metabolites from formalin-fixed and paraffin-embedded (FFPE) pancreatic tissue blocks with those identified in optimal cutting temperature (OCT)-embedded pancreatic tissue blocks. Thus, ultra-performance liquid chromatograph-mass spectrometry/mass spec...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831194/ https://www.ncbi.nlm.nih.gov/pubmed/31638165 http://dx.doi.org/10.3892/ijo.2019.4898 |
Sumario: | The purpose of the present study was to compare metabolites from formalin-fixed and paraffin-embedded (FFPE) pancreatic tissue blocks with those identified in optimal cutting temperature (OCT)-embedded pancreatic tissue blocks. Thus, ultra-performance liquid chromatograph-mass spectrometry/mass spectrometry-based metabolic profiling was performed in paired frozen (n=13) and FFPE (n=13) human pancreatic adenocarcinoma tissue samples, in addition to their benign counterparts. A total of 206 metabolites were identified in both OCT-embedded and FFPE tissue samples. The method feasibility was confirmed through reproducibility and a consistency assessment. Partial least-squares discriminant analysis and heatmap analysis reliably distinguished tumor and normal tissue phenotypes. The expression of 10 compounds, including N-acetylaspartate and creatinine, was significantly different in both OCT-embedded and FFPE tumor samples. These ten compounds may be viable candidate biomarkers of malignant pancreatic tissues. The super-categories to which they belonged exhibited no significant differences between FFPE and OCT-embedded samples. Furthermore, purine, arginine and proline, and pyrimidine metabolism used a shared pathway found in both OCT-embedded and FFPE tissue samples. These results supported the notion that metabolomic data acquired from FFPE pancreatic cancer specimens are reliable for use in retrospective and clinical studies. |
---|