Cargando…

MicroRNAs: potential targets and agents of endocrine disruption in female reproduction

MicroRNAs are short non-coding RNAs that have been widely recognized as key mediators in the epigenetic control of gene expression and which are present in virtually all cells and tissues studied. These regulatory molecules are generated in multiple steps in a process called microRNA biogenesis. Dis...

Descripción completa

Detalles Bibliográficos
Autores principales: Sabry, Reem, Yamate, Jyoji, Favetta, Laura, LaMarre, Jonathan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Japanese Society of Toxicologic Pathology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831493/
https://www.ncbi.nlm.nih.gov/pubmed/31719748
http://dx.doi.org/10.1293/tox.2019-0054
Descripción
Sumario:MicroRNAs are short non-coding RNAs that have been widely recognized as key mediators in the epigenetic control of gene expression and which are present in virtually all cells and tissues studied. These regulatory molecules are generated in multiple steps in a process called microRNA biogenesis. Distinct microRNA expression patterns during the different stages of oocyte and embryo development suggest important regulatory roles for these small RNAs. Moreover, studies antagonizing specific microRNAs and enzymes in microRNA biogenesis pathways have demonstrated that interference with normal miRNA function leads to infertility and is associated with some reproductive abnormalities. Endocrine disrupting chemicals such as Bisphenol A (BPA) are synthetic hormone mimics that have been found to negatively impact reproductive health. In addition to their direct effects on gene expression, these chemicals are widely implicated in the disruption of epigenetic pathways, including the expression and activity of miRNAs, thereby altering gene expression. In this review, the roles of microRNAs during mammalian oocyte and embryo development are outlined and the different mechanisms by which endocrine disruptors such as BPA interfere with these epigenetic regulators to cause reproductive problems is explored.