Cargando…

Diurnal variations of cloud and relative humidity profiles across the tropics

Even though the diurnal cycle of solar forcing on the climate system is well defined, the diurnal evolutions of water vapor and clouds induced by the solar forcing are not yet established across the tropics. Here we combine recent satellite observations of clouds profiles and relative humidity profi...

Descripción completa

Detalles Bibliográficos
Autores principales: Chepfer, H., Brogniez, H., Noel, V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831577/
https://www.ncbi.nlm.nih.gov/pubmed/31690755
http://dx.doi.org/10.1038/s41598-019-52437-6
Descripción
Sumario:Even though the diurnal cycle of solar forcing on the climate system is well defined, the diurnal evolutions of water vapor and clouds induced by the solar forcing are not yet established across the tropics. Here we combine recent satellite observations of clouds profiles and relative humidity profiles to document the diurnal variations of the water vapor and clouds vertical distributions over all the tropics in June-July-August. While the daily mean water vapor and cloud profiles are different between land and ocean, their diurnal variations with respect to their daily means exhibit similar features. Relative humidity profiles and optically thin cloud fraction profiles vary together which maximize during night-time in the entire troposphere and a minimize in day-time. The fraction of optically opaque clouds peak in the free troposphere in the early afternoon, transforms into a high altitude positive anomaly of optically thin clouds from nightfall to sunrise. In addition, land regions exhibit a daily low thin cloud positive anomaly, while oceanic regions exposed to subsidence air motions exhibit positive anomalies of opaque clouds in the lower atmosphere during the second half of the night, which grow until sunrise.