Cargando…
Signal-to-background ratio and lateral resolution in deep tissue imaging by optical coherence microscopy in the 1700 nm spectral band
We quantitatively investigated the image quality in deep tissue imaging with optical coherence microscopy (OCM) in the 1700 nm spectral band, in terms of the signal-to-background ratio (SBR) and lateral resolution. In this work, to demonstrate the benefits of using the 1700 nm spectral band for OCM...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831679/ https://www.ncbi.nlm.nih.gov/pubmed/31690729 http://dx.doi.org/10.1038/s41598-019-52175-9 |
Sumario: | We quantitatively investigated the image quality in deep tissue imaging with optical coherence microscopy (OCM) in the 1700 nm spectral band, in terms of the signal-to-background ratio (SBR) and lateral resolution. In this work, to demonstrate the benefits of using the 1700 nm spectral band for OCM imaging of brain samples, we compared the imaging quality of OCM en-face images obtained at the same position by using a hybrid 1300 nm/1700 nm spectral domain (SD) OCM system with shared sample and reference arms. By observing a reflective resolution test target through a 1.5 mm-thick tissue phantom, which had a similar scattering coefficient to brain cortex tissue, we confirmed that 1700 nm OCM achieved an SBR about 6-times higher than 1300 nm OCM, although the lateral resolution of the both OCMs was similarly degraded with the increase of the imaging depth. Finally, we also demonstrated high-contrast deep tissue imaging of a mouse brain at a depth up to 1.8 mm by using high-resolution 1700 nm SD-OCM. |
---|