Cargando…
An Algorithmic Information Calculus for Causal Discovery and Reprogramming Systems
We introduce and develop a method that demonstrates that the algorithmic information content of a system can be used as a steering handle in the dynamical phase space, thus affording an avenue for controlling and reprogramming systems. The method consists of applying a series of controlled intervent...
Autores principales: | Zenil, Hector, Kiani, Narsis A., Marabita, Francesco, Deng, Yue, Elias, Szabolcs, Schmidt, Angelika, Ball, Gordon, Tegnér, Jesper |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831824/ https://www.ncbi.nlm.nih.gov/pubmed/31541920 http://dx.doi.org/10.1016/j.isci.2019.07.043 |
Ejemplares similares
-
A Review of Graph and Network Complexity from an Algorithmic Information Perspective
por: Zenil, Hector, et al.
Publicado: (2018) -
The Thermodynamics of Network Coding, and an Algorithmic Refinement of the Principle of Maximum Entropy †
por: Zenil, Hector, et al.
Publicado: (2019) -
Symmetry and Correspondence of Algorithmic Complexity over Geometric, Spatial and Topological Representations †
por: Zenil, Hector, et al.
Publicado: (2018) -
A perspective on bridging scales and design of models using low-dimensional manifolds and data-driven model inference
por: Tegnér, Jesper, et al.
Publicado: (2016) -
Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces
por: Hernández-Orozco, Santiago, et al.
Publicado: (2021)