Cargando…

Rhodapentalenes: Pincer Complexes with Internal Aromaticity

Pincer complexes are a remarkably versatile family benefited from their stability, diversity, and tunability. Many of them contain aromatic organic rings at the periphery, and aromaticity plays an important role in their stability and properties, whereas their metallacyclic cores are not aromatic. H...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhuo, Qingde, Zhang, Hong, Ding, Linting, Lin, Jianfeng, Zhou, Xiaoxi, Hua, Yuhui, Zhu, Jun, Xia, Haiping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831826/
https://www.ncbi.nlm.nih.gov/pubmed/31551198
http://dx.doi.org/10.1016/j.isci.2019.08.027
Descripción
Sumario:Pincer complexes are a remarkably versatile family benefited from their stability, diversity, and tunability. Many of them contain aromatic organic rings at the periphery, and aromaticity plays an important role in their stability and properties, whereas their metallacyclic cores are not aromatic. Herein, we report rhodapentalenes, which can be viewed as pincer complexes in which the metallacyclic cores exhibit considerable aromatic character. Rhodapentalenes show good thermal stability, although the rhodium-carbon bonds in such compounds are fragile. Experimental and computational studies suggest that the stabilization of rigid CCC pincer architectures together with an intrinsic aromaticity is vital for these metallacyclic rhodium species. Dearomatization-aromatization reactions, corresponding to metal-ligand cooperation of classical aromatic pincer complexes, were observed in this system. These findings suggest a new concept for pincer chemistry, the internal aromaticity involving metal d-orbitals, which would be useful for exploiting the nature of construction motif and inspire further applications.