Cargando…

Rat Na(V)1.7 loss-of-function genetic model: Deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibers

Recapitulating human disease pathophysiology using genetic animal models is a powerful approach to enable mechanistic understanding of genotype–phenotype relationships for drug development. Na(V)1.7 is a sodium channel expressed in the peripheral nervous system with strong human genetic validation a...

Descripción completa

Detalles Bibliográficos
Autores principales: Grubinska, B, Chen, L, Alsaloum, M, Rampal, N, Matson, DJ, Yang, C, Taborn, K, Zhang, M, Youngblood, B, Liu, D, Galbreath, E, Allred, S, Lepherd, M, Ferrando, R, Kornecook, TJ, Lehto, SG, Waxman, SG, Moyer, BD, Dib-Hajj, S, Gingras, J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831982/
https://www.ncbi.nlm.nih.gov/pubmed/31550995
http://dx.doi.org/10.1177/1744806919881846
_version_ 1783466090971529216
author Grubinska, B
Chen, L
Alsaloum, M
Rampal, N
Matson, DJ
Yang, C
Taborn, K
Zhang, M
Youngblood, B
Liu, D
Galbreath, E
Allred, S
Lepherd, M
Ferrando, R
Kornecook, TJ
Lehto, SG
Waxman, SG
Moyer, BD
Dib-Hajj, S
Gingras, J
author_facet Grubinska, B
Chen, L
Alsaloum, M
Rampal, N
Matson, DJ
Yang, C
Taborn, K
Zhang, M
Youngblood, B
Liu, D
Galbreath, E
Allred, S
Lepherd, M
Ferrando, R
Kornecook, TJ
Lehto, SG
Waxman, SG
Moyer, BD
Dib-Hajj, S
Gingras, J
author_sort Grubinska, B
collection PubMed
description Recapitulating human disease pathophysiology using genetic animal models is a powerful approach to enable mechanistic understanding of genotype–phenotype relationships for drug development. Na(V)1.7 is a sodium channel expressed in the peripheral nervous system with strong human genetic validation as a pain target. Efforts to identify novel analgesics that are nonaddictive resulted in industry exploration of a class of sulfonamide compounds that bind to the fourth voltage-sensor domain of Na(V)1.7. Due to sequence differences in this region, sulfonamide blockers generally are potent on human but not rat Na(V)1.7 channels. To test sulfonamide-based chemical matter in rat models of pain, we generated a humanized Na(V)1.7 rat expressing a chimeric Na(V)1.7 protein containing the sulfonamide-binding site of the human gene sequence as a replacement for the equivalent rat sequence. Unexpectedly, upon transcription, the human insert was spliced out, resulting in a premature stop codon. Using a validated antibody, Na(V)1.7 protein was confirmed to be lost in the brainstem, dorsal root ganglia, sciatic nerve, and gastrointestinal tissue but not in nasal turbinates or olfactory bulb in rats homozygous for the knock-in allele (HOM-KI). HOM-KI rats exhibited normal intraepidermal nerve fiber density with reduced tetrodotoxin-sensitive current density and action potential firing in small diameter dorsal root ganglia neurons. HOM-KI rats did not exhibit nociceptive pain responses in hot plate or capsaicin-induced flinching assays and did not exhibit neuropathic pain responses following spinal nerve ligation. Consistent with expression of chimeric Na(V)1.7 in olfactory tissue, HOM-KI rats retained olfactory function. This new genetic model highlights the necessity of Na(V)1.7 for pain behavior in rats and indicates that sufficient inhibition of Na(V)1.7 in humans may reduce pain in neuropathic conditions. Due to preserved olfactory function, this rat model represents an alternative to global Na(V)1.7 knockout mice that require time-intensive hand feeding during early postnatal development.
format Online
Article
Text
id pubmed-6831982
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-68319822019-11-13 Rat Na(V)1.7 loss-of-function genetic model: Deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibers Grubinska, B Chen, L Alsaloum, M Rampal, N Matson, DJ Yang, C Taborn, K Zhang, M Youngblood, B Liu, D Galbreath, E Allred, S Lepherd, M Ferrando, R Kornecook, TJ Lehto, SG Waxman, SG Moyer, BD Dib-Hajj, S Gingras, J Mol Pain Research Article Recapitulating human disease pathophysiology using genetic animal models is a powerful approach to enable mechanistic understanding of genotype–phenotype relationships for drug development. Na(V)1.7 is a sodium channel expressed in the peripheral nervous system with strong human genetic validation as a pain target. Efforts to identify novel analgesics that are nonaddictive resulted in industry exploration of a class of sulfonamide compounds that bind to the fourth voltage-sensor domain of Na(V)1.7. Due to sequence differences in this region, sulfonamide blockers generally are potent on human but not rat Na(V)1.7 channels. To test sulfonamide-based chemical matter in rat models of pain, we generated a humanized Na(V)1.7 rat expressing a chimeric Na(V)1.7 protein containing the sulfonamide-binding site of the human gene sequence as a replacement for the equivalent rat sequence. Unexpectedly, upon transcription, the human insert was spliced out, resulting in a premature stop codon. Using a validated antibody, Na(V)1.7 protein was confirmed to be lost in the brainstem, dorsal root ganglia, sciatic nerve, and gastrointestinal tissue but not in nasal turbinates or olfactory bulb in rats homozygous for the knock-in allele (HOM-KI). HOM-KI rats exhibited normal intraepidermal nerve fiber density with reduced tetrodotoxin-sensitive current density and action potential firing in small diameter dorsal root ganglia neurons. HOM-KI rats did not exhibit nociceptive pain responses in hot plate or capsaicin-induced flinching assays and did not exhibit neuropathic pain responses following spinal nerve ligation. Consistent with expression of chimeric Na(V)1.7 in olfactory tissue, HOM-KI rats retained olfactory function. This new genetic model highlights the necessity of Na(V)1.7 for pain behavior in rats and indicates that sufficient inhibition of Na(V)1.7 in humans may reduce pain in neuropathic conditions. Due to preserved olfactory function, this rat model represents an alternative to global Na(V)1.7 knockout mice that require time-intensive hand feeding during early postnatal development. SAGE Publications 2019-11-05 /pmc/articles/PMC6831982/ /pubmed/31550995 http://dx.doi.org/10.1177/1744806919881846 Text en © The Author(s) 2019 http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle Research Article
Grubinska, B
Chen, L
Alsaloum, M
Rampal, N
Matson, DJ
Yang, C
Taborn, K
Zhang, M
Youngblood, B
Liu, D
Galbreath, E
Allred, S
Lepherd, M
Ferrando, R
Kornecook, TJ
Lehto, SG
Waxman, SG
Moyer, BD
Dib-Hajj, S
Gingras, J
Rat Na(V)1.7 loss-of-function genetic model: Deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibers
title Rat Na(V)1.7 loss-of-function genetic model: Deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibers
title_full Rat Na(V)1.7 loss-of-function genetic model: Deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibers
title_fullStr Rat Na(V)1.7 loss-of-function genetic model: Deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibers
title_full_unstemmed Rat Na(V)1.7 loss-of-function genetic model: Deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibers
title_short Rat Na(V)1.7 loss-of-function genetic model: Deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibers
title_sort rat na(v)1.7 loss-of-function genetic model: deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibers
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831982/
https://www.ncbi.nlm.nih.gov/pubmed/31550995
http://dx.doi.org/10.1177/1744806919881846
work_keys_str_mv AT grubinskab ratnav17lossoffunctiongeneticmodeldeficientnociceptiveandneuropathicpainbehaviorwithretainedolfactoryfunctionandintraepidermalnervefibers
AT chenl ratnav17lossoffunctiongeneticmodeldeficientnociceptiveandneuropathicpainbehaviorwithretainedolfactoryfunctionandintraepidermalnervefibers
AT alsaloumm ratnav17lossoffunctiongeneticmodeldeficientnociceptiveandneuropathicpainbehaviorwithretainedolfactoryfunctionandintraepidermalnervefibers
AT rampaln ratnav17lossoffunctiongeneticmodeldeficientnociceptiveandneuropathicpainbehaviorwithretainedolfactoryfunctionandintraepidermalnervefibers
AT matsondj ratnav17lossoffunctiongeneticmodeldeficientnociceptiveandneuropathicpainbehaviorwithretainedolfactoryfunctionandintraepidermalnervefibers
AT yangc ratnav17lossoffunctiongeneticmodeldeficientnociceptiveandneuropathicpainbehaviorwithretainedolfactoryfunctionandintraepidermalnervefibers
AT tabornk ratnav17lossoffunctiongeneticmodeldeficientnociceptiveandneuropathicpainbehaviorwithretainedolfactoryfunctionandintraepidermalnervefibers
AT zhangm ratnav17lossoffunctiongeneticmodeldeficientnociceptiveandneuropathicpainbehaviorwithretainedolfactoryfunctionandintraepidermalnervefibers
AT youngbloodb ratnav17lossoffunctiongeneticmodeldeficientnociceptiveandneuropathicpainbehaviorwithretainedolfactoryfunctionandintraepidermalnervefibers
AT liud ratnav17lossoffunctiongeneticmodeldeficientnociceptiveandneuropathicpainbehaviorwithretainedolfactoryfunctionandintraepidermalnervefibers
AT galbreathe ratnav17lossoffunctiongeneticmodeldeficientnociceptiveandneuropathicpainbehaviorwithretainedolfactoryfunctionandintraepidermalnervefibers
AT allreds ratnav17lossoffunctiongeneticmodeldeficientnociceptiveandneuropathicpainbehaviorwithretainedolfactoryfunctionandintraepidermalnervefibers
AT lepherdm ratnav17lossoffunctiongeneticmodeldeficientnociceptiveandneuropathicpainbehaviorwithretainedolfactoryfunctionandintraepidermalnervefibers
AT ferrandor ratnav17lossoffunctiongeneticmodeldeficientnociceptiveandneuropathicpainbehaviorwithretainedolfactoryfunctionandintraepidermalnervefibers
AT kornecooktj ratnav17lossoffunctiongeneticmodeldeficientnociceptiveandneuropathicpainbehaviorwithretainedolfactoryfunctionandintraepidermalnervefibers
AT lehtosg ratnav17lossoffunctiongeneticmodeldeficientnociceptiveandneuropathicpainbehaviorwithretainedolfactoryfunctionandintraepidermalnervefibers
AT waxmansg ratnav17lossoffunctiongeneticmodeldeficientnociceptiveandneuropathicpainbehaviorwithretainedolfactoryfunctionandintraepidermalnervefibers
AT moyerbd ratnav17lossoffunctiongeneticmodeldeficientnociceptiveandneuropathicpainbehaviorwithretainedolfactoryfunctionandintraepidermalnervefibers
AT dibhajjs ratnav17lossoffunctiongeneticmodeldeficientnociceptiveandneuropathicpainbehaviorwithretainedolfactoryfunctionandintraepidermalnervefibers
AT gingrasj ratnav17lossoffunctiongeneticmodeldeficientnociceptiveandneuropathicpainbehaviorwithretainedolfactoryfunctionandintraepidermalnervefibers