Cargando…

Superadiabatic Forces via the Acceleration Gradient in Quantum Many-Body Dynamics

We apply the formally exact quantum power functional framework (J. Chem. Phys. 2015, 143, 174108) to a one-dimensional Hooke’s helium model atom. The physical dynamics are described on the one-body level beyond the density-based adiabatic approximation. We show that gradients of both the microscopic...

Descripción completa

Detalles Bibliográficos
Autores principales: Brütting, Moritz, Trepl, Thomas, de las Heras, Daniel, Schmidt, Matthias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832129/
https://www.ncbi.nlm.nih.gov/pubmed/31614514
http://dx.doi.org/10.3390/molecules24203660
_version_ 1783466103453777920
author Brütting, Moritz
Trepl, Thomas
de las Heras, Daniel
Schmidt, Matthias
author_facet Brütting, Moritz
Trepl, Thomas
de las Heras, Daniel
Schmidt, Matthias
author_sort Brütting, Moritz
collection PubMed
description We apply the formally exact quantum power functional framework (J. Chem. Phys. 2015, 143, 174108) to a one-dimensional Hooke’s helium model atom. The physical dynamics are described on the one-body level beyond the density-based adiabatic approximation. We show that gradients of both the microscopic velocity and acceleration field are required to correctly describe the effects due to interparticle interactions. We validate the proposed analytical forms of the superadiabatic force and transport contributions by comparison to one-body data from exact numerical solution of the Schrödinger equation. Superadiabatic contributions beyond the adiabatic approximation are important in the dynamics and they include effective dissipation.
format Online
Article
Text
id pubmed-6832129
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-68321292019-11-20 Superadiabatic Forces via the Acceleration Gradient in Quantum Many-Body Dynamics Brütting, Moritz Trepl, Thomas de las Heras, Daniel Schmidt, Matthias Molecules Article We apply the formally exact quantum power functional framework (J. Chem. Phys. 2015, 143, 174108) to a one-dimensional Hooke’s helium model atom. The physical dynamics are described on the one-body level beyond the density-based adiabatic approximation. We show that gradients of both the microscopic velocity and acceleration field are required to correctly describe the effects due to interparticle interactions. We validate the proposed analytical forms of the superadiabatic force and transport contributions by comparison to one-body data from exact numerical solution of the Schrödinger equation. Superadiabatic contributions beyond the adiabatic approximation are important in the dynamics and they include effective dissipation. MDPI 2019-10-11 /pmc/articles/PMC6832129/ /pubmed/31614514 http://dx.doi.org/10.3390/molecules24203660 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Brütting, Moritz
Trepl, Thomas
de las Heras, Daniel
Schmidt, Matthias
Superadiabatic Forces via the Acceleration Gradient in Quantum Many-Body Dynamics
title Superadiabatic Forces via the Acceleration Gradient in Quantum Many-Body Dynamics
title_full Superadiabatic Forces via the Acceleration Gradient in Quantum Many-Body Dynamics
title_fullStr Superadiabatic Forces via the Acceleration Gradient in Quantum Many-Body Dynamics
title_full_unstemmed Superadiabatic Forces via the Acceleration Gradient in Quantum Many-Body Dynamics
title_short Superadiabatic Forces via the Acceleration Gradient in Quantum Many-Body Dynamics
title_sort superadiabatic forces via the acceleration gradient in quantum many-body dynamics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832129/
https://www.ncbi.nlm.nih.gov/pubmed/31614514
http://dx.doi.org/10.3390/molecules24203660
work_keys_str_mv AT bruttingmoritz superadiabaticforcesviatheaccelerationgradientinquantummanybodydynamics
AT treplthomas superadiabaticforcesviatheaccelerationgradientinquantummanybodydynamics
AT delasherasdaniel superadiabaticforcesviatheaccelerationgradientinquantummanybodydynamics
AT schmidtmatthias superadiabaticforcesviatheaccelerationgradientinquantummanybodydynamics