Cargando…
Untargeted/Targeted 2D Gas Chromatography/Mass Spectrometry Detection of the Total Volatile Tea Metabolome
Identifying all analytes in a natural product is a daunting challenge, even if fractionated by volatility. In this study, comprehensive two-dimensional gas chromatography/mass spectrometry (GC×GC-MS) was used to investigate relative distribution of volatiles in green, pu-erh tea from leaves collecte...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832143/ https://www.ncbi.nlm.nih.gov/pubmed/31635337 http://dx.doi.org/10.3390/molecules24203757 |
_version_ | 1783466106785103872 |
---|---|
author | Morimoto, Joshua Rosso, Marta Cialiè Kfoury, Nicole Bicchi, Carlo Cordero, Chiara Robbat, Albert |
author_facet | Morimoto, Joshua Rosso, Marta Cialiè Kfoury, Nicole Bicchi, Carlo Cordero, Chiara Robbat, Albert |
author_sort | Morimoto, Joshua |
collection | PubMed |
description | Identifying all analytes in a natural product is a daunting challenge, even if fractionated by volatility. In this study, comprehensive two-dimensional gas chromatography/mass spectrometry (GC×GC-MS) was used to investigate relative distribution of volatiles in green, pu-erh tea from leaves collected at two different elevations (1162 m and 1651 m). A total of 317 high and 280 low elevation compounds were detected, many of them known to have sensory and health beneficial properties. The samples were evaluated by two different software. The first, GC Image, used feature-based detection algorithms to identify spectral patterns and peak-regions, leading to tentative identification of 107 compounds. The software produced a composite map illustrating differences in the samples. The second, Ion Analytics, employed spectral deconvolution algorithms to detect target compounds, then subtracted their spectra from the total ion current chromatogram to reveal untargeted compounds. Compound identities were more easily assigned, since chromatogram complexities were reduced. Of the 317 compounds, for example, 34% were positively identified and 42% were tentatively identified, leaving 24% as unknowns. This study demonstrated the targeted/untargeted approach taken simplifies the analysis time for large data sets, leading to a better understanding of the chemistry behind biological phenomena. |
format | Online Article Text |
id | pubmed-6832143 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68321432019-11-20 Untargeted/Targeted 2D Gas Chromatography/Mass Spectrometry Detection of the Total Volatile Tea Metabolome Morimoto, Joshua Rosso, Marta Cialiè Kfoury, Nicole Bicchi, Carlo Cordero, Chiara Robbat, Albert Molecules Article Identifying all analytes in a natural product is a daunting challenge, even if fractionated by volatility. In this study, comprehensive two-dimensional gas chromatography/mass spectrometry (GC×GC-MS) was used to investigate relative distribution of volatiles in green, pu-erh tea from leaves collected at two different elevations (1162 m and 1651 m). A total of 317 high and 280 low elevation compounds were detected, many of them known to have sensory and health beneficial properties. The samples were evaluated by two different software. The first, GC Image, used feature-based detection algorithms to identify spectral patterns and peak-regions, leading to tentative identification of 107 compounds. The software produced a composite map illustrating differences in the samples. The second, Ion Analytics, employed spectral deconvolution algorithms to detect target compounds, then subtracted their spectra from the total ion current chromatogram to reveal untargeted compounds. Compound identities were more easily assigned, since chromatogram complexities were reduced. Of the 317 compounds, for example, 34% were positively identified and 42% were tentatively identified, leaving 24% as unknowns. This study demonstrated the targeted/untargeted approach taken simplifies the analysis time for large data sets, leading to a better understanding of the chemistry behind biological phenomena. MDPI 2019-10-18 /pmc/articles/PMC6832143/ /pubmed/31635337 http://dx.doi.org/10.3390/molecules24203757 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Morimoto, Joshua Rosso, Marta Cialiè Kfoury, Nicole Bicchi, Carlo Cordero, Chiara Robbat, Albert Untargeted/Targeted 2D Gas Chromatography/Mass Spectrometry Detection of the Total Volatile Tea Metabolome |
title | Untargeted/Targeted 2D Gas Chromatography/Mass Spectrometry Detection of the Total Volatile Tea Metabolome |
title_full | Untargeted/Targeted 2D Gas Chromatography/Mass Spectrometry Detection of the Total Volatile Tea Metabolome |
title_fullStr | Untargeted/Targeted 2D Gas Chromatography/Mass Spectrometry Detection of the Total Volatile Tea Metabolome |
title_full_unstemmed | Untargeted/Targeted 2D Gas Chromatography/Mass Spectrometry Detection of the Total Volatile Tea Metabolome |
title_short | Untargeted/Targeted 2D Gas Chromatography/Mass Spectrometry Detection of the Total Volatile Tea Metabolome |
title_sort | untargeted/targeted 2d gas chromatography/mass spectrometry detection of the total volatile tea metabolome |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832143/ https://www.ncbi.nlm.nih.gov/pubmed/31635337 http://dx.doi.org/10.3390/molecules24203757 |
work_keys_str_mv | AT morimotojoshua untargetedtargeted2dgaschromatographymassspectrometrydetectionofthetotalvolatileteametabolome AT rossomartacialie untargetedtargeted2dgaschromatographymassspectrometrydetectionofthetotalvolatileteametabolome AT kfourynicole untargetedtargeted2dgaschromatographymassspectrometrydetectionofthetotalvolatileteametabolome AT bicchicarlo untargetedtargeted2dgaschromatographymassspectrometrydetectionofthetotalvolatileteametabolome AT corderochiara untargetedtargeted2dgaschromatographymassspectrometrydetectionofthetotalvolatileteametabolome AT robbatalbert untargetedtargeted2dgaschromatographymassspectrometrydetectionofthetotalvolatileteametabolome |