Cargando…
A New Approach for Motor Imagery Classification Based on Sorted Blind Source Separation, Continuous Wavelet Transform, and Convolutional Neural Network
Brain-Computer Interfaces (BCI) are systems that allow the interaction of people and devices on the grounds of brain activity. The noninvasive and most viable way to obtain such information is by using electroencephalography (EEG). However, these signals have a low signal-to-noise ratio, as well as...
Autores principales: | Ortiz-Echeverri, César J., Salazar-Colores, Sebastián, Rodríguez-Reséndiz, Juvenal, Gómez-Loenzo, Roberto A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832153/ https://www.ncbi.nlm.nih.gov/pubmed/31635424 http://dx.doi.org/10.3390/s19204541 |
Ejemplares similares
-
Application of Continuous Wavelet Transform and Convolutional Neural Network in Decoding Motor Imagery Brain-Computer Interface
por: Lee, Hyeon Kyu, et al.
Publicado: (2019) -
Robust R-peak detection in an electrocardiogram with stationary wavelet transformation and separable convolution
por: Yun, Donghwan, et al.
Publicado: (2022) -
Auto-Regression Model-Based Off-Line PID Controller Tuning: An Adaptive Strategy for DC Motor Control
por: Niembro-Ceceña, José A., et al.
Publicado: (2022) -
Local and global convolutional transformer-based motor imagery EEG classification
por: Zhang, Jiayang, et al.
Publicado: (2023) -
Automatic ECG Classification Using Continuous Wavelet Transform and Convolutional Neural Network
por: Wang, Tao, et al.
Publicado: (2021)