Cargando…
An Ensemble Learning Approach for Electrocardiogram Sensor Based Human Emotion Recognition
Recently, researchers in the area of biosensor based human emotion recognition have used different types of machine learning models for recognizing human emotions. However, most of them still lack the ability to recognize human emotions with higher classification accuracy incorporating a limited num...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832168/ https://www.ncbi.nlm.nih.gov/pubmed/31623279 http://dx.doi.org/10.3390/s19204495 |
_version_ | 1783466112674955264 |
---|---|
author | Dissanayake, Theekshana Rajapaksha, Yasitha Ragel, Roshan Nawinne, Isuru |
author_facet | Dissanayake, Theekshana Rajapaksha, Yasitha Ragel, Roshan Nawinne, Isuru |
author_sort | Dissanayake, Theekshana |
collection | PubMed |
description | Recently, researchers in the area of biosensor based human emotion recognition have used different types of machine learning models for recognizing human emotions. However, most of them still lack the ability to recognize human emotions with higher classification accuracy incorporating a limited number of bio-sensors. In the domain of machine learning, ensemble learning methods have been successfully applied to solve different types of real-world machine learning problems which require improved classification accuracies. Emphasising on that, this research suggests an ensemble learning approach for developing a machine learning model that can recognize four major human emotions namely: anger; sadness; joy; and pleasure incorporating electrocardiogram (ECG) signals. As feature extraction methods, this analysis combines four ECG signal based techniques, namely: heart rate variability; empirical mode decomposition; with-in beat analysis; and frequency spectrum analysis. The first three feature extraction methods are well-known ECG based feature extraction techniques mentioned in the literature, and the fourth technique is a novel method proposed in this study. The machine learning procedure of this investigation evaluates the performance of a set of well-known ensemble learners for emotion classification and further improves the classification results using feature selection as a prior step to ensemble model training. Compared to the best performing single biosensor based model in the literature, the developed ensemble learner has the accuracy gain of 10.77%. Furthermore, the developed model outperforms most of the multiple biosensor based emotion recognition models with a significantly higher classification accuracy gain. |
format | Online Article Text |
id | pubmed-6832168 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68321682019-11-20 An Ensemble Learning Approach for Electrocardiogram Sensor Based Human Emotion Recognition Dissanayake, Theekshana Rajapaksha, Yasitha Ragel, Roshan Nawinne, Isuru Sensors (Basel) Article Recently, researchers in the area of biosensor based human emotion recognition have used different types of machine learning models for recognizing human emotions. However, most of them still lack the ability to recognize human emotions with higher classification accuracy incorporating a limited number of bio-sensors. In the domain of machine learning, ensemble learning methods have been successfully applied to solve different types of real-world machine learning problems which require improved classification accuracies. Emphasising on that, this research suggests an ensemble learning approach for developing a machine learning model that can recognize four major human emotions namely: anger; sadness; joy; and pleasure incorporating electrocardiogram (ECG) signals. As feature extraction methods, this analysis combines four ECG signal based techniques, namely: heart rate variability; empirical mode decomposition; with-in beat analysis; and frequency spectrum analysis. The first three feature extraction methods are well-known ECG based feature extraction techniques mentioned in the literature, and the fourth technique is a novel method proposed in this study. The machine learning procedure of this investigation evaluates the performance of a set of well-known ensemble learners for emotion classification and further improves the classification results using feature selection as a prior step to ensemble model training. Compared to the best performing single biosensor based model in the literature, the developed ensemble learner has the accuracy gain of 10.77%. Furthermore, the developed model outperforms most of the multiple biosensor based emotion recognition models with a significantly higher classification accuracy gain. MDPI 2019-10-16 /pmc/articles/PMC6832168/ /pubmed/31623279 http://dx.doi.org/10.3390/s19204495 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Dissanayake, Theekshana Rajapaksha, Yasitha Ragel, Roshan Nawinne, Isuru An Ensemble Learning Approach for Electrocardiogram Sensor Based Human Emotion Recognition |
title | An Ensemble Learning Approach for Electrocardiogram Sensor Based Human Emotion Recognition |
title_full | An Ensemble Learning Approach for Electrocardiogram Sensor Based Human Emotion Recognition |
title_fullStr | An Ensemble Learning Approach for Electrocardiogram Sensor Based Human Emotion Recognition |
title_full_unstemmed | An Ensemble Learning Approach for Electrocardiogram Sensor Based Human Emotion Recognition |
title_short | An Ensemble Learning Approach for Electrocardiogram Sensor Based Human Emotion Recognition |
title_sort | ensemble learning approach for electrocardiogram sensor based human emotion recognition |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832168/ https://www.ncbi.nlm.nih.gov/pubmed/31623279 http://dx.doi.org/10.3390/s19204495 |
work_keys_str_mv | AT dissanayaketheekshana anensemblelearningapproachforelectrocardiogramsensorbasedhumanemotionrecognition AT rajapakshayasitha anensemblelearningapproachforelectrocardiogramsensorbasedhumanemotionrecognition AT ragelroshan anensemblelearningapproachforelectrocardiogramsensorbasedhumanemotionrecognition AT nawinneisuru anensemblelearningapproachforelectrocardiogramsensorbasedhumanemotionrecognition AT dissanayaketheekshana ensemblelearningapproachforelectrocardiogramsensorbasedhumanemotionrecognition AT rajapakshayasitha ensemblelearningapproachforelectrocardiogramsensorbasedhumanemotionrecognition AT ragelroshan ensemblelearningapproachforelectrocardiogramsensorbasedhumanemotionrecognition AT nawinneisuru ensemblelearningapproachforelectrocardiogramsensorbasedhumanemotionrecognition |