Cargando…
A Convex Optimization Algorithm for Compressed Sensing in a Complex Domain: The Complex-Valued Split Bregman Method
The Split Bregman method (SBM), a popular and universal CS reconstruction algorithm for inverse problems with both l(1)-norm and TV-norm regularization, has been extensively applied in complex domains through the complex-to-real transforming technique, e.g., MRI imaging and radar. However, SBM still...
Autores principales: | Xiong, Kai, Zhao, Guanghui, Shi, Guangming, Wang, Yingbin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832202/ https://www.ncbi.nlm.nih.gov/pubmed/31635423 http://dx.doi.org/10.3390/s19204540 |
Ejemplares similares
-
A Bregman-Split-Based Compressive Sensing Method for Dynamic Harmonic Estimation
por: Chi, Aobing, et al.
Publicado: (2022) -
Real-Time Compressive Sensing MRI Reconstruction Using GPU Computing and Split Bregman Methods
por: Smith, David S., et al.
Publicado: (2012) -
Convex optimization: algorithms and complexity
por: Bubeck, Sébastien
Publicado: (2015) -
Split Bregman iteration for multi-period mean variance portfolio optimization
por: Corsaro, Stefania, et al.
Publicado: (2021) -
Application of Generalized Split Linearized Bregman Iteration algorithm for Alzheimer's disease prediction
por: Zheng, Weimin, et al.
Publicado: (2020)