Cargando…
Microwave Assisted Reactions of Fluorescent Pyrrolodiazine Building Blocks
We report here the synthesis and optical spectral properties of several new pyrrolodiazine derivatives. The luminescent heterocycles were synthesized by 1,3-dipolar cycloaddition reactions between N-alkylated pyridazine and methylpropiolate or dimethyl acetylenedicarboxylate (DMAD). The pyrrolopyrid...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832281/ https://www.ncbi.nlm.nih.gov/pubmed/31635419 http://dx.doi.org/10.3390/molecules24203760 |
Sumario: | We report here the synthesis and optical spectral properties of several new pyrrolodiazine derivatives. The luminescent heterocycles were synthesized by 1,3-dipolar cycloaddition reactions between N-alkylated pyridazine and methylpropiolate or dimethyl acetylenedicarboxylate (DMAD). The pyrrolopyridazine derivatives are blue emitters with moderate quantum yields (around 25%) in the case of pyrrolopyridazines and negligible yet measurable emission for pyrrolophthalazines. In a subsequent step towards including the pyrrolodiazine moiety, given its spectral properties in various macromolecular frameworks such as biological molecules, a subset of the synthetized compounds has been subjected to α-bromination. A selective and efficient way for α-bromination in heterogeneous catalysis of pyrrolodiazine derivatives under microwave (MW) irradiation is presented. We report substantially higher yields under MW irradiation, whereas the solvent amounts required are at least five-fold less compared to classical heating. |
---|