Cargando…
Drug Side-Effect Prediction Via Random Walk on the Signed Heterogeneous Drug Network
Drug side-effects have become a major public health concern as they are the underlying cause of over a million serious injuries and deaths each year. Therefore, it is of critical importance to detect side-effects as early as possible. Existing computational methods mainly utilize the drug chemical p...
Autores principales: | Hu, Baofang, Wang, Hong, Yu, Zhenmei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832386/ https://www.ncbi.nlm.nih.gov/pubmed/31614686 http://dx.doi.org/10.3390/molecules24203668 |
Ejemplares similares
-
Adverse Drug Reaction Predictions Using Stacking Deep Heterogeneous Information Network Embedding Approach
por: Hu, Baofang, et al.
Publicado: (2018) -
Inferring new indications for approved drugs via random walk on drug-disease heterogenous networks
por: Liu, Hui, et al.
Publicado: (2016) -
Optimizing drug–target interaction prediction based on random walk on heterogeneous networks
por: Seal, Abhik, et al.
Publicado: (2015) -
Drug combinatorics and side effect estimation on the signed human drug-target network
por: Torres, Núria Ballber, et al.
Publicado: (2016) -
Drug repositioning based on individual bi-random walks on a heterogeneous network
por: Wang, Yuehui, et al.
Publicado: (2019)