Cargando…
Distributed Acoustic Sensing Using Chirped-Pulse Phase-Sensitive OTDR Technology
In 2016, a novel interrogation technique for phase-sensitive (Φ)OTDR was mathematically formalized and experimentally demonstrated, based on the use of a chirped-pulse as a probe, in an otherwise direct-detection-based standard setup: chirped-pulse (CP-)ΦOTDR. Despite its short lifetime, this method...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832391/ https://www.ncbi.nlm.nih.gov/pubmed/31601056 http://dx.doi.org/10.3390/s19204368 |
Sumario: | In 2016, a novel interrogation technique for phase-sensitive (Φ)OTDR was mathematically formalized and experimentally demonstrated, based on the use of a chirped-pulse as a probe, in an otherwise direct-detection-based standard setup: chirped-pulse (CP-)ΦOTDR. Despite its short lifetime, this methodology has now become a reference for distributed acoustic sensing (DAS) due to its valuable advantages with respect to conventional (i.e., coherent-detection or frequency sweeping-based) interrogation strategies. Presenting intrinsic immunity to fading points and using direct detection, CP-ΦOTDR presents reliable high sensitivity measurements while keeping the cost and complexity of the setup bounded. Numerous technique analyses and contributions to study/improve its performance have been recently published, leading to a solid, highly competitive and extraordinarily simple method for distributed fibre sensing. The interesting sensing features achieved in these last years CP-ΦOTDR have motivated the use of this technology in diverse applications, such as seismology or civil engineering (monitoring of pipelines, train rails, etc.). Besides, new areas of application of this distributed sensor have been explored, based on distributed chemical (refractive index) and temperature-based transducer sensors. In this review, the principle of operation of CP-ΦOTDR is revisited, highlighting the particular performance characteristics of the technique and offering a comparison with alternative distributed sensing methods (with focus on coherent-detection-based ΦOTDR). The sensor is also characterized for operation in up to 100 km with a low cost-setup, showing performances close to the attainable limits for a given set of signal parameters [≈tens-hundreds of pe/sqrt(Hz)]. The areas of application of this sensing technology employed so far are briefly outlined in order to frame the technology. |
---|