Cargando…
Quantitative Analysis of Major Metals in Agricultural Biochar Using Laser-Induced Breakdown Spectroscopy with an Adaboost Artificial Neural Network Algorithm
To promote the green development of agriculture by returning biochar to farmland, it is of great significance to simultaneously detect heavy and nutritional metals in agricultural biochar. This work aimed first to apply laser-induced breakdown spectroscopy (LIBS) for the determination of heavy (Pb,...
Autores principales: | Duan, Hongwei, Han, Lujia, Huang, Guangqun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832405/ https://www.ncbi.nlm.nih.gov/pubmed/31635230 http://dx.doi.org/10.3390/molecules24203753 |
Ejemplares similares
-
Quantitative Detection of Chromium Pollution in Biochar Based on Matrix Effect Classification Regression Model
por: Guo, Mei, et al.
Publicado: (2021) -
Enhanced Laser-Induced Breakdown Spectroscopy for Heavy Metal Detection in Agriculture: A Review
por: Yang, Zihan, et al.
Publicado: (2022) -
Quantitative analysis of fertilizer using laser-induced breakdown spectroscopy combined with random forest algorithm
por: Wei, Lai, et al.
Publicado: (2023) -
Adaboost Algorithm in Artificial Intelligence for Optimizing the IRI Prediction Accuracy of Asphalt Concrete Pavement
por: Wang, Changbai, et al.
Publicado: (2021) -
Comparison of Calibration Approaches in Laser-Induced Breakdown Spectroscopy for Proximal Soil Sensing in Precision Agriculture
por: Riebe, Daniel, et al.
Publicado: (2019)