Cargando…
Multiscale Supervised Classification of Point Clouds with Urban and Forest Applications
We analyze the utility of multiscale supervised classification algorithms for object detection and extraction from laser scanning or photogrammetric point clouds. Only the geometric information (the point coordinates) was considered, thus making the method independent of the systems used to collect...
Autores principales: | Cabo, Carlos, Ordóñez, Celestino, Sáchez-Lasheras, Fernando, Roca-Pardiñas, Javier, de Cos-Juez, Javier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832418/ https://www.ncbi.nlm.nih.gov/pubmed/31627468 http://dx.doi.org/10.3390/s19204523 |
Ejemplares similares
-
Automatic Detection and Classification of Pole-Like Objects for Urban Cartography Using Mobile Laser Scanning Data
por: Ordóñez, Celestino, et al.
Publicado: (2017) -
Self-Supervised Learning for Point-Cloud Classification by a Multigrid Autoencoder
por: Zhai, Ruifeng, et al.
Publicado: (2022) -
A Parametric Model of the LARCODEMS Heavy Media Separator by Means of Multivariate Adaptive Regression Splines
por: Álvarez, Mario Menéndez, et al.
Publicado: (2017) -
Evolution and forecasting of PM10 concentration at the Port of Gijon (Spain)
por: Sánchez Lasheras, Fernando, et al.
Publicado: (2020) -
Voxel-Based Neighborhood for Spatial Shape Pattern Classification of Lidar Point Clouds with Supervised Learning
por: Plaza-Leiva, Victoria, et al.
Publicado: (2017)