Cargando…
An Exploration of Machine Learning Methods for Robust Boredom Classification Using EEG and GSR Data
In recent years, affective computing has been actively researched to provide a higher level of emotion-awareness. Numerous studies have been conducted to detect the user’s emotions from physiological data. Among a myriad of target emotions, boredom, in particular, has been suggested to cause not onl...
Autores principales: | Seo, Jungryul, Laine, Teemu H., Sohn, Kyung-Ah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832442/ https://www.ncbi.nlm.nih.gov/pubmed/31635194 http://dx.doi.org/10.3390/s19204561 |
Ejemplares similares
-
EEG-Based Emotion Classification for Alzheimer’s Disease Patients Using Conventional Machine Learning and Recurrent Neural Network Models
por: Seo, Jungryul, et al.
Publicado: (2020) -
GSR is not essential for the maintenance of antioxidant defenses in mouse cochlea: Possible role of the thioredoxin system as a functional backup for GSR
por: Han, Chul, et al.
Publicado: (2017) -
DeepGSR: an optimized deep-learning structure for the recognition of genomic signals and regions
por: Kalkatawi, Manal, et al.
Publicado: (2019) -
An accurate emotion recognition system using ECG and GSR signals and matching pursuit method
por: Goshvarpour, Atefeh, et al.
Publicado: (2017) -
Data Collection Framework for Context-Aware Virtual Reality Application Development in Unity: Case of Avatar Embodiment
por: Moon, Jiyoung, et al.
Publicado: (2022)