Cargando…
Monitoring and Determining Mitochondrial Network Parameters in Live Lung Cancer Cells
Mitochondria are dynamic organelles that constantly fuse and divide, forming dynamic tubular networks. Abnormalities in mitochondrial dynamics and morphology are linked to diverse pathological states, including cancer. Thus, alterations in mitochondrial parameters could indicate early events of dise...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832496/ https://www.ncbi.nlm.nih.gov/pubmed/31635288 http://dx.doi.org/10.3390/jcm8101723 |
_version_ | 1783466186399285248 |
---|---|
author | Mirzapoiazova, Tamara Li, Haiqing Nathan, Anusha Srivstava, Saumya Nasser, Mohd W. Lennon, Frances Armstrong, Brian Mambetsariev, Isa Chu, Peiguo G. Achuthan, Srisairam Batra, Surinder K. Kulkarni, Prakash Salgia, Ravi |
author_facet | Mirzapoiazova, Tamara Li, Haiqing Nathan, Anusha Srivstava, Saumya Nasser, Mohd W. Lennon, Frances Armstrong, Brian Mambetsariev, Isa Chu, Peiguo G. Achuthan, Srisairam Batra, Surinder K. Kulkarni, Prakash Salgia, Ravi |
author_sort | Mirzapoiazova, Tamara |
collection | PubMed |
description | Mitochondria are dynamic organelles that constantly fuse and divide, forming dynamic tubular networks. Abnormalities in mitochondrial dynamics and morphology are linked to diverse pathological states, including cancer. Thus, alterations in mitochondrial parameters could indicate early events of disease manifestation or progression. However, finding reliable and quantitative tools for monitoring mitochondria and determining the network parameters, particularly in live cells, has proven challenging. Here, we present a 2D confocal imaging-based approach that combines automatic mitochondrial morphology and dynamics analysis with fractal analysis in live small cell lung cancer (SCLC) cells. We chose SCLC cells as a test case since they typically have very little cytoplasm, but an abundance of smaller mitochondria compared to many of the commonly used cell types. The 2D confocal images provide a robust approach to quantitatively measure mitochondrial dynamics and morphology in live cells. Furthermore, we performed 3D reconstruction of electron microscopic images and show that the 3D reconstruction of the electron microscopic images complements this approach to yield better resolution. The data also suggest that the parameters of mitochondrial dynamics and fractal dimensions are sensitive indicators of cellular response to subtle perturbations, and hence, may serve as potential markers of drug response in lung cancer. |
format | Online Article Text |
id | pubmed-6832496 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68324962019-11-25 Monitoring and Determining Mitochondrial Network Parameters in Live Lung Cancer Cells Mirzapoiazova, Tamara Li, Haiqing Nathan, Anusha Srivstava, Saumya Nasser, Mohd W. Lennon, Frances Armstrong, Brian Mambetsariev, Isa Chu, Peiguo G. Achuthan, Srisairam Batra, Surinder K. Kulkarni, Prakash Salgia, Ravi J Clin Med Article Mitochondria are dynamic organelles that constantly fuse and divide, forming dynamic tubular networks. Abnormalities in mitochondrial dynamics and morphology are linked to diverse pathological states, including cancer. Thus, alterations in mitochondrial parameters could indicate early events of disease manifestation or progression. However, finding reliable and quantitative tools for monitoring mitochondria and determining the network parameters, particularly in live cells, has proven challenging. Here, we present a 2D confocal imaging-based approach that combines automatic mitochondrial morphology and dynamics analysis with fractal analysis in live small cell lung cancer (SCLC) cells. We chose SCLC cells as a test case since they typically have very little cytoplasm, but an abundance of smaller mitochondria compared to many of the commonly used cell types. The 2D confocal images provide a robust approach to quantitatively measure mitochondrial dynamics and morphology in live cells. Furthermore, we performed 3D reconstruction of electron microscopic images and show that the 3D reconstruction of the electron microscopic images complements this approach to yield better resolution. The data also suggest that the parameters of mitochondrial dynamics and fractal dimensions are sensitive indicators of cellular response to subtle perturbations, and hence, may serve as potential markers of drug response in lung cancer. MDPI 2019-10-18 /pmc/articles/PMC6832496/ /pubmed/31635288 http://dx.doi.org/10.3390/jcm8101723 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mirzapoiazova, Tamara Li, Haiqing Nathan, Anusha Srivstava, Saumya Nasser, Mohd W. Lennon, Frances Armstrong, Brian Mambetsariev, Isa Chu, Peiguo G. Achuthan, Srisairam Batra, Surinder K. Kulkarni, Prakash Salgia, Ravi Monitoring and Determining Mitochondrial Network Parameters in Live Lung Cancer Cells |
title | Monitoring and Determining Mitochondrial Network Parameters in Live Lung Cancer Cells |
title_full | Monitoring and Determining Mitochondrial Network Parameters in Live Lung Cancer Cells |
title_fullStr | Monitoring and Determining Mitochondrial Network Parameters in Live Lung Cancer Cells |
title_full_unstemmed | Monitoring and Determining Mitochondrial Network Parameters in Live Lung Cancer Cells |
title_short | Monitoring and Determining Mitochondrial Network Parameters in Live Lung Cancer Cells |
title_sort | monitoring and determining mitochondrial network parameters in live lung cancer cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832496/ https://www.ncbi.nlm.nih.gov/pubmed/31635288 http://dx.doi.org/10.3390/jcm8101723 |
work_keys_str_mv | AT mirzapoiazovatamara monitoringanddeterminingmitochondrialnetworkparametersinlivelungcancercells AT lihaiqing monitoringanddeterminingmitochondrialnetworkparametersinlivelungcancercells AT nathananusha monitoringanddeterminingmitochondrialnetworkparametersinlivelungcancercells AT srivstavasaumya monitoringanddeterminingmitochondrialnetworkparametersinlivelungcancercells AT nassermohdw monitoringanddeterminingmitochondrialnetworkparametersinlivelungcancercells AT lennonfrances monitoringanddeterminingmitochondrialnetworkparametersinlivelungcancercells AT armstrongbrian monitoringanddeterminingmitochondrialnetworkparametersinlivelungcancercells AT mambetsarievisa monitoringanddeterminingmitochondrialnetworkparametersinlivelungcancercells AT chupeiguog monitoringanddeterminingmitochondrialnetworkparametersinlivelungcancercells AT achuthansrisairam monitoringanddeterminingmitochondrialnetworkparametersinlivelungcancercells AT batrasurinderk monitoringanddeterminingmitochondrialnetworkparametersinlivelungcancercells AT kulkarniprakash monitoringanddeterminingmitochondrialnetworkparametersinlivelungcancercells AT salgiaravi monitoringanddeterminingmitochondrialnetworkparametersinlivelungcancercells |