Cargando…
Insights into Amyotrophic Lateral Sclerosis from a Machine Learning Perspective
Objective: Amyotrophic lateral sclerosis (ALS) disease state prediction usually assumes linear progression and uses a classifier evaluated by its accuracy. Since disease progression is not linear, and the accuracy measurement cannot tell large from small prediction errors, we dispense with the linea...
Autores principales: | Gordon, Jonathan, Lerner, Boaz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832919/ https://www.ncbi.nlm.nih.gov/pubmed/31581566 http://dx.doi.org/10.3390/jcm8101578 |
Ejemplares similares
-
Machine Learning in Amyotrophic Lateral Sclerosis: Achievements, Pitfalls, and Future Directions
por: Grollemund, Vincent, et al.
Publicado: (2019) -
The genetics of amyotrophic lateral sclerosis: current insights
por: Alsultan, Afnan A, et al.
Publicado: (2016) -
Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis
por: Placek, Katerina, et al.
Publicado: (2020) -
Biomedical signals and machine learning in amyotrophic lateral sclerosis: a systematic review
por: Fernandes, Felipe, et al.
Publicado: (2021) -
Current view and perspectives in amyotrophic lateral sclerosis
por: Mathis, Stéphane, et al.
Publicado: (2017)