Cargando…
A Genetic-Based Extreme Gradient Boosting Model for Detecting Intrusions in Wireless Sensor Networks
An Intrusion detection system is an essential security tool for protecting services and infrastructures of wireless sensor networks from unseen and unpredictable attacks. Few works of machine learning have been proposed for intrusion detection in wireless sensor networks and that have achieved reaso...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832929/ https://www.ncbi.nlm.nih.gov/pubmed/31658774 http://dx.doi.org/10.3390/s19204383 |
_version_ | 1783466259141099520 |
---|---|
author | Alqahtani, Mnahi Gumaei, Abdu Mathkour, Hassan Maher Ben Ismail, Mohamed |
author_facet | Alqahtani, Mnahi Gumaei, Abdu Mathkour, Hassan Maher Ben Ismail, Mohamed |
author_sort | Alqahtani, Mnahi |
collection | PubMed |
description | An Intrusion detection system is an essential security tool for protecting services and infrastructures of wireless sensor networks from unseen and unpredictable attacks. Few works of machine learning have been proposed for intrusion detection in wireless sensor networks and that have achieved reasonable results. However, these works still need to be more accurate and efficient against imbalanced data problems in network traffic. In this paper, we proposed a new model to detect intrusion attacks based on a genetic algorithm and an extreme gradient boosting (XGBoot) classifier, called GXGBoost model. The latter is a gradient boosting model designed for improving the performance of traditional models to detect minority classes of attacks in the highly imbalanced data traffic of wireless sensor networks. A set of experiments were conducted on wireless sensor network-detection system (WSN-DS) dataset using holdout and 10 fold cross validation techniques. The results of 10 fold cross validation tests revealed that the proposed approach outperformed the state-of-the-art approaches and other ensemble learning classifiers with high detection rates of 98.2%, 92.9%, 98.9%, and 99.5% for flooding, scheduling, grayhole, and blackhole attacks, respectively, in addition to 99.9% for normal traffic. |
format | Online Article Text |
id | pubmed-6832929 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68329292019-11-25 A Genetic-Based Extreme Gradient Boosting Model for Detecting Intrusions in Wireless Sensor Networks Alqahtani, Mnahi Gumaei, Abdu Mathkour, Hassan Maher Ben Ismail, Mohamed Sensors (Basel) Article An Intrusion detection system is an essential security tool for protecting services and infrastructures of wireless sensor networks from unseen and unpredictable attacks. Few works of machine learning have been proposed for intrusion detection in wireless sensor networks and that have achieved reasonable results. However, these works still need to be more accurate and efficient against imbalanced data problems in network traffic. In this paper, we proposed a new model to detect intrusion attacks based on a genetic algorithm and an extreme gradient boosting (XGBoot) classifier, called GXGBoost model. The latter is a gradient boosting model designed for improving the performance of traditional models to detect minority classes of attacks in the highly imbalanced data traffic of wireless sensor networks. A set of experiments were conducted on wireless sensor network-detection system (WSN-DS) dataset using holdout and 10 fold cross validation techniques. The results of 10 fold cross validation tests revealed that the proposed approach outperformed the state-of-the-art approaches and other ensemble learning classifiers with high detection rates of 98.2%, 92.9%, 98.9%, and 99.5% for flooding, scheduling, grayhole, and blackhole attacks, respectively, in addition to 99.9% for normal traffic. MDPI 2019-10-10 /pmc/articles/PMC6832929/ /pubmed/31658774 http://dx.doi.org/10.3390/s19204383 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Alqahtani, Mnahi Gumaei, Abdu Mathkour, Hassan Maher Ben Ismail, Mohamed A Genetic-Based Extreme Gradient Boosting Model for Detecting Intrusions in Wireless Sensor Networks |
title | A Genetic-Based Extreme Gradient Boosting Model for Detecting Intrusions in Wireless Sensor Networks |
title_full | A Genetic-Based Extreme Gradient Boosting Model for Detecting Intrusions in Wireless Sensor Networks |
title_fullStr | A Genetic-Based Extreme Gradient Boosting Model for Detecting Intrusions in Wireless Sensor Networks |
title_full_unstemmed | A Genetic-Based Extreme Gradient Boosting Model for Detecting Intrusions in Wireless Sensor Networks |
title_short | A Genetic-Based Extreme Gradient Boosting Model for Detecting Intrusions in Wireless Sensor Networks |
title_sort | genetic-based extreme gradient boosting model for detecting intrusions in wireless sensor networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832929/ https://www.ncbi.nlm.nih.gov/pubmed/31658774 http://dx.doi.org/10.3390/s19204383 |
work_keys_str_mv | AT alqahtanimnahi ageneticbasedextremegradientboostingmodelfordetectingintrusionsinwirelesssensornetworks AT gumaeiabdu ageneticbasedextremegradientboostingmodelfordetectingintrusionsinwirelesssensornetworks AT mathkourhassan ageneticbasedextremegradientboostingmodelfordetectingintrusionsinwirelesssensornetworks AT maherbenismailmohamed ageneticbasedextremegradientboostingmodelfordetectingintrusionsinwirelesssensornetworks AT alqahtanimnahi geneticbasedextremegradientboostingmodelfordetectingintrusionsinwirelesssensornetworks AT gumaeiabdu geneticbasedextremegradientboostingmodelfordetectingintrusionsinwirelesssensornetworks AT mathkourhassan geneticbasedextremegradientboostingmodelfordetectingintrusionsinwirelesssensornetworks AT maherbenismailmohamed geneticbasedextremegradientboostingmodelfordetectingintrusionsinwirelesssensornetworks |