Cargando…
Evaluation of Aboveground Nitrogen Content of Winter Wheat Using Digital Imagery of Unmanned Aerial Vehicles
Nitrogen (N) content is an important basis for the precise management of wheat fields. The application of unmanned aerial vehicles (UAVs) in agriculture provides an easier and faster way to monitor nitrogen content. Previous studies have shown that the features acquired from UAVs yield favorable res...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832936/ https://www.ncbi.nlm.nih.gov/pubmed/31614815 http://dx.doi.org/10.3390/s19204416 |
_version_ | 1783466260897464320 |
---|---|
author | Yang, Baohua Wang, Mengxuan Sha, Zhengxia Wang, Bing Chen, Jianlin Yao, Xia Cheng, Tao Cao, Weixing Zhu, Yan |
author_facet | Yang, Baohua Wang, Mengxuan Sha, Zhengxia Wang, Bing Chen, Jianlin Yao, Xia Cheng, Tao Cao, Weixing Zhu, Yan |
author_sort | Yang, Baohua |
collection | PubMed |
description | Nitrogen (N) content is an important basis for the precise management of wheat fields. The application of unmanned aerial vehicles (UAVs) in agriculture provides an easier and faster way to monitor nitrogen content. Previous studies have shown that the features acquired from UAVs yield favorable results in monitoring wheat growth. However, since most of them are based on different vegetation indices, it is difficult to meet the requirements of accurate image interpretation. Moreover, resampling also easily ignores the structural features of the image information itself. Therefore, a spectral-spatial feature is proposed combining vegetation indices (VIs) and wavelet features (WFs), especially the acquisition of wavelet features from the UAV image, which was transformed from the spatial domain to the frequency domain with a wavelet transformation. In this way, the complete spatial information of different scales can be obtained to realize good frequency localization, scale transformation, and directional change. The different models based on different features were compared, including partial least squares regression (PLSR), support vector regression (SVR), and particle swarm optimization-SVR (PSO-SVR). The results showed that the accuracy of the model based on the spectral-spatial feature by combining VIs and WFs was higher than that of VIs or WF indices alone. The performance of PSO-SVR was the best (R(2) = 0.9025, root mean square error (RMSE) = 0.3287) among the three regression algorithms regardless of the use of all the original features or the combination features. Our results implied that our proposed method could improve the estimation accuracy of aboveground nitrogen content of winter wheat from UAVs with consumer digital cameras, which have greater application potential in predicting other growth parameters. |
format | Online Article Text |
id | pubmed-6832936 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68329362019-11-25 Evaluation of Aboveground Nitrogen Content of Winter Wheat Using Digital Imagery of Unmanned Aerial Vehicles Yang, Baohua Wang, Mengxuan Sha, Zhengxia Wang, Bing Chen, Jianlin Yao, Xia Cheng, Tao Cao, Weixing Zhu, Yan Sensors (Basel) Article Nitrogen (N) content is an important basis for the precise management of wheat fields. The application of unmanned aerial vehicles (UAVs) in agriculture provides an easier and faster way to monitor nitrogen content. Previous studies have shown that the features acquired from UAVs yield favorable results in monitoring wheat growth. However, since most of them are based on different vegetation indices, it is difficult to meet the requirements of accurate image interpretation. Moreover, resampling also easily ignores the structural features of the image information itself. Therefore, a spectral-spatial feature is proposed combining vegetation indices (VIs) and wavelet features (WFs), especially the acquisition of wavelet features from the UAV image, which was transformed from the spatial domain to the frequency domain with a wavelet transformation. In this way, the complete spatial information of different scales can be obtained to realize good frequency localization, scale transformation, and directional change. The different models based on different features were compared, including partial least squares regression (PLSR), support vector regression (SVR), and particle swarm optimization-SVR (PSO-SVR). The results showed that the accuracy of the model based on the spectral-spatial feature by combining VIs and WFs was higher than that of VIs or WF indices alone. The performance of PSO-SVR was the best (R(2) = 0.9025, root mean square error (RMSE) = 0.3287) among the three regression algorithms regardless of the use of all the original features or the combination features. Our results implied that our proposed method could improve the estimation accuracy of aboveground nitrogen content of winter wheat from UAVs with consumer digital cameras, which have greater application potential in predicting other growth parameters. MDPI 2019-10-12 /pmc/articles/PMC6832936/ /pubmed/31614815 http://dx.doi.org/10.3390/s19204416 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yang, Baohua Wang, Mengxuan Sha, Zhengxia Wang, Bing Chen, Jianlin Yao, Xia Cheng, Tao Cao, Weixing Zhu, Yan Evaluation of Aboveground Nitrogen Content of Winter Wheat Using Digital Imagery of Unmanned Aerial Vehicles |
title | Evaluation of Aboveground Nitrogen Content of Winter Wheat Using Digital Imagery of Unmanned Aerial Vehicles |
title_full | Evaluation of Aboveground Nitrogen Content of Winter Wheat Using Digital Imagery of Unmanned Aerial Vehicles |
title_fullStr | Evaluation of Aboveground Nitrogen Content of Winter Wheat Using Digital Imagery of Unmanned Aerial Vehicles |
title_full_unstemmed | Evaluation of Aboveground Nitrogen Content of Winter Wheat Using Digital Imagery of Unmanned Aerial Vehicles |
title_short | Evaluation of Aboveground Nitrogen Content of Winter Wheat Using Digital Imagery of Unmanned Aerial Vehicles |
title_sort | evaluation of aboveground nitrogen content of winter wheat using digital imagery of unmanned aerial vehicles |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832936/ https://www.ncbi.nlm.nih.gov/pubmed/31614815 http://dx.doi.org/10.3390/s19204416 |
work_keys_str_mv | AT yangbaohua evaluationofabovegroundnitrogencontentofwinterwheatusingdigitalimageryofunmannedaerialvehicles AT wangmengxuan evaluationofabovegroundnitrogencontentofwinterwheatusingdigitalimageryofunmannedaerialvehicles AT shazhengxia evaluationofabovegroundnitrogencontentofwinterwheatusingdigitalimageryofunmannedaerialvehicles AT wangbing evaluationofabovegroundnitrogencontentofwinterwheatusingdigitalimageryofunmannedaerialvehicles AT chenjianlin evaluationofabovegroundnitrogencontentofwinterwheatusingdigitalimageryofunmannedaerialvehicles AT yaoxia evaluationofabovegroundnitrogencontentofwinterwheatusingdigitalimageryofunmannedaerialvehicles AT chengtao evaluationofabovegroundnitrogencontentofwinterwheatusingdigitalimageryofunmannedaerialvehicles AT caoweixing evaluationofabovegroundnitrogencontentofwinterwheatusingdigitalimageryofunmannedaerialvehicles AT zhuyan evaluationofabovegroundnitrogencontentofwinterwheatusingdigitalimageryofunmannedaerialvehicles |