Cargando…
Simultaneous EEG Acquisition System for Multiple Users: Development and Related Issues
Social interaction is one of humans’ most important activities and many efforts have been made to understand the phenomenon. Recently, some investigators have attempted to apply advanced brain signal acquisition systems that allow dynamic brain activities to be measured simultaneously during social...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832946/ https://www.ncbi.nlm.nih.gov/pubmed/31652579 http://dx.doi.org/10.3390/s19204592 |
Sumario: | Social interaction is one of humans’ most important activities and many efforts have been made to understand the phenomenon. Recently, some investigators have attempted to apply advanced brain signal acquisition systems that allow dynamic brain activities to be measured simultaneously during social interactions. Most studies to date have investigated dyadic interactions, although multilateral interactions are more common in reality. However, it is believed that most studies have focused on such interactions because of methodological limitations, in that it is very difficult to design a well-controlled experiment for multiple users at a reasonable cost. Accordingly, there are few simultaneous acquisition systems for multiple users. In this study, we propose a design framework for an acquisition system that measures EEG data simultaneously in an environment with 10 or more people. Our proposed framework allowed us to acquire EEG data at up to 1 kHz frequency from up to 20 people simultaneously. Details of our acquisition system are described from hardware and software perspectives. In addition, various related issues that arose in the system’s development—such as synchronization techniques, system loads, electrodes, and applications—are discussed. In addition, simultaneous visual ERP experiments were conducted with a group of nine people to validate the EEG acquisition framework proposed. We found that our framework worked reasonably well with respect to less than 4 ms delay and average loss rates of 1%. It is expected that this system can be used in various hyperscanning studies, such as those on crowd psychology, large-scale human interactions, and collaborative brain–computer interface, among others. |
---|