Cargando…
Connecting Histopathology Imaging and Proteomics in Kidney Cancer through Machine Learning
Proteomics data encode molecular features of diagnostic value and accurately reflect key underlying biological mechanisms in cancers. Histopathology imaging is a well-established clinical approach to cancer diagnosis. The predictive relationship between large-scale proteomics and H&E-stained his...
Autores principales: | Azuaje, Francisco, Kim, Sang-Yoon, Perez Hernandez, Daniel, Dittmar, Gunnar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832975/ https://www.ncbi.nlm.nih.gov/pubmed/31557788 http://dx.doi.org/10.3390/jcm8101535 |
Ejemplares similares
-
Advancing Post-Genome Data and System Integration Through Machine Learning
por: Azuaje, Francisco
Publicado: (2002) -
Review of "Data Mining: Practical Machine Learning Tools and Techniques" by Witten and Frank
por: Azuaje, Francisco
Publicado: (2006) -
Machine Learning Methods for Histopathological Image Analysis
por: Komura, Daisuke, et al.
Publicado: (2018) -
Accelerating Cancer Histopathology Workflows with Chemical Imaging and Machine Learning
por: Falahkheirkhah, Kianoush, et al.
Publicado: (2023) -
Machine learning approaches to supporting the identification of photoreceptor-enriched genes based on expression data
por: Wang, Haiying, et al.
Publicado: (2006)