Cargando…
Synthesis of Samarium-Based Metal Organic Compound Nanoparticles with Polychromatic-Photoluminescence for Bio-Tissue Fluorescence Imaging
The development of nanomaterials with special optical window is critical for clinical applications and the optoelectronic industry. In this work, eight kinds of samarium-based metal organic compound nanoparticles (Sm–Fe, Sm–Ga, Sm–Mn, Sm–Na, Sm–Nb, Sm–W, Sm–Cu, and Sm–Al) were synthesized through a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832984/ https://www.ncbi.nlm.nih.gov/pubmed/31658754 http://dx.doi.org/10.3390/molecules24203657 |
Sumario: | The development of nanomaterials with special optical window is critical for clinical applications and the optoelectronic industry. In this work, eight kinds of samarium-based metal organic compound nanoparticles (Sm–Fe, Sm–Ga, Sm–Mn, Sm–Na, Sm–Nb, Sm–W, Sm–Cu, and Sm–Al) were synthesized through a solution method. They show polychromatic-photoluminescence spectra extended from the UV to near-infrared (NIR) region when excited by 280 nm, 380 nm, 480 nm, 580 nm, and 785 nm light. They emit direct white light with respect to UV excitation. Tunable white-to-green fluorescence can be achieved by variation of excitation light around 300–400 nm. When they are excited by a 785 nm light source, they show intense fluorescence around 800–1100 nm, which is promising for NIR bio-imaging. Their application in multicolor ultra-wide-range bio-tissue fluorescence imaging is demonstrated by UV (359–371 nm), blue (450–490 nm), green (540–552 nm), and NIR light (central wavelength = 785 nm) excitation with pig kidney tissue samples. |
---|