Cargando…
Mixed Maximum Loss Design for Optic Disc and Optic Cup Segmentation with Deep Learning from Imbalanced Samples
Glaucoma is a serious eye disease that can cause permanent blindness and is difficult to diagnose early. Optic disc (OD) and optic cup (OC) play a pivotal role in the screening of glaucoma. Therefore, accurate segmentation of OD and OC from fundus images is a key task in the automatic screening of g...
Autores principales: | Xu, Yong-li, Lu, Shuai, Li, Han-xiong, Li, Rui-rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6833024/ https://www.ncbi.nlm.nih.gov/pubmed/31614560 http://dx.doi.org/10.3390/s19204401 |
Ejemplares similares
-
A Retrospective Comparison of Deep Learning to Manual Annotations for Optic Disc and Optic Cup Segmentation in Fundus Photographs
por: Fu, Huazhu, et al.
Publicado: (2020) -
Identifying the Edges of the Optic Cup and the Optic Disc in Glaucoma Patients by Segmentation
por: Tadisetty, Srikanth, et al.
Publicado: (2023) -
Machine Learning and Deep Learning Techniques for Optic Disc and Cup Segmentation – A Review
por: Alawad, Mohammed, et al.
Publicado: (2022) -
Optic Disc and Optic Cup Segmentation Methodologies for Glaucoma Image Detection: A Survey
por: Almazroa, Ahmed, et al.
Publicado: (2015) -
Segmentation of Optic Disc and Cup Using Modified Recurrent Neural Network
por: Surendiran, J., et al.
Publicado: (2022)