Cargando…
Ambulatory and Laboratory Stress Detection Based on Raw Electrocardiogram Signals Using a Convolutional Neural Network
The goals of this study are the suggestion of a better classification method for detecting stressed states based on raw electrocardiogram (ECG) data and a method for training a deep neural network (DNN) with a smaller data set. We suggest an end-to-end architecture to detect stress using raw ECGs. T...
Autores principales: | Cho, Hyun-Myung, Park, Heesu, Dong, Suh-Yeon, Youn, Inchan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6833036/ https://www.ncbi.nlm.nih.gov/pubmed/31614646 http://dx.doi.org/10.3390/s19204408 |
Ejemplares similares
-
Prediction of Lower Extremity Multi-Joint Angles during Overground Walking by Using a Single IMU with a Low Frequency Based on an LSTM Recurrent Neural Network
por: Sung, Joohwan, et al.
Publicado: (2021) -
Robustness of convolutional neural networks to physiological electrocardiogram noise
por: Venton, J., et al.
Publicado: (2021) -
The Role of Heart-Rate Variability Parameters in Activity Recognition and Energy-Expenditure Estimation Using Wearable Sensors
por: Park, Heesu, et al.
Publicado: (2017) -
Electrocardiogram Classification Based on Faster Regions with Convolutional Neural Network
por: Ji, Yinsheng, et al.
Publicado: (2019) -
Convolutional neural network optimized by differential evolution for electrocardiogram classification
por: Chen, Shan Wei, et al.
Publicado: (2023)