Cargando…
Hierarchical Classification of Urban ALS Data by Using Geometry and Intensity Information
Airborne laser scanning (ALS) can acquire both geometry and intensity information of geo-objects, which is important in mapping a large-scale three-dimensional (3D) urban environment. However, the intensity information recorded by ALS will be changed due to the flight height and atmospheric attenuat...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6833049/ https://www.ncbi.nlm.nih.gov/pubmed/31640270 http://dx.doi.org/10.3390/s19204583 |
_version_ | 1783466288103817216 |
---|---|
author | Liu, Xiaoqiang Chen, Yanming Li, Shuyi Cheng, Liang Li, Manchun |
author_facet | Liu, Xiaoqiang Chen, Yanming Li, Shuyi Cheng, Liang Li, Manchun |
author_sort | Liu, Xiaoqiang |
collection | PubMed |
description | Airborne laser scanning (ALS) can acquire both geometry and intensity information of geo-objects, which is important in mapping a large-scale three-dimensional (3D) urban environment. However, the intensity information recorded by ALS will be changed due to the flight height and atmospheric attenuation, which decreases the robustness of the trained supervised classifier. This paper proposes a hierarchical classification method by separately using geometry and intensity information of urban ALS data. The method uses supervised learning for stable geometry information and unsupervised learning for fluctuating intensity information. The experiment results show that the proposed method can utilize the intensity information effectively, based on three aspects, as below. (1) The proposed method improves the accuracy of classification result by using intensity. (2) When the ALS data to be classified are acquired under the same conditions as the training data, the performance of the proposed method is as good as the supervised learning method. (3) When the ALS data to be classified are acquired under different conditions from the training data, the performance of the proposed method is better than the supervised learning method. Therefore, the classification model derived from the proposed method can be transferred to other ALS data whose intensity is inconsistent with the training data. Furthermore, the proposed method can contribute to the hierarchical use of some other ALS information, such as multi-spectral information. |
format | Online Article Text |
id | pubmed-6833049 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68330492019-11-25 Hierarchical Classification of Urban ALS Data by Using Geometry and Intensity Information Liu, Xiaoqiang Chen, Yanming Li, Shuyi Cheng, Liang Li, Manchun Sensors (Basel) Article Airborne laser scanning (ALS) can acquire both geometry and intensity information of geo-objects, which is important in mapping a large-scale three-dimensional (3D) urban environment. However, the intensity information recorded by ALS will be changed due to the flight height and atmospheric attenuation, which decreases the robustness of the trained supervised classifier. This paper proposes a hierarchical classification method by separately using geometry and intensity information of urban ALS data. The method uses supervised learning for stable geometry information and unsupervised learning for fluctuating intensity information. The experiment results show that the proposed method can utilize the intensity information effectively, based on three aspects, as below. (1) The proposed method improves the accuracy of classification result by using intensity. (2) When the ALS data to be classified are acquired under the same conditions as the training data, the performance of the proposed method is as good as the supervised learning method. (3) When the ALS data to be classified are acquired under different conditions from the training data, the performance of the proposed method is better than the supervised learning method. Therefore, the classification model derived from the proposed method can be transferred to other ALS data whose intensity is inconsistent with the training data. Furthermore, the proposed method can contribute to the hierarchical use of some other ALS information, such as multi-spectral information. MDPI 2019-10-21 /pmc/articles/PMC6833049/ /pubmed/31640270 http://dx.doi.org/10.3390/s19204583 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Xiaoqiang Chen, Yanming Li, Shuyi Cheng, Liang Li, Manchun Hierarchical Classification of Urban ALS Data by Using Geometry and Intensity Information |
title | Hierarchical Classification of Urban ALS Data by Using Geometry and Intensity Information |
title_full | Hierarchical Classification of Urban ALS Data by Using Geometry and Intensity Information |
title_fullStr | Hierarchical Classification of Urban ALS Data by Using Geometry and Intensity Information |
title_full_unstemmed | Hierarchical Classification of Urban ALS Data by Using Geometry and Intensity Information |
title_short | Hierarchical Classification of Urban ALS Data by Using Geometry and Intensity Information |
title_sort | hierarchical classification of urban als data by using geometry and intensity information |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6833049/ https://www.ncbi.nlm.nih.gov/pubmed/31640270 http://dx.doi.org/10.3390/s19204583 |
work_keys_str_mv | AT liuxiaoqiang hierarchicalclassificationofurbanalsdatabyusinggeometryandintensityinformation AT chenyanming hierarchicalclassificationofurbanalsdatabyusinggeometryandintensityinformation AT lishuyi hierarchicalclassificationofurbanalsdatabyusinggeometryandintensityinformation AT chengliang hierarchicalclassificationofurbanalsdatabyusinggeometryandintensityinformation AT limanchun hierarchicalclassificationofurbanalsdatabyusinggeometryandintensityinformation |