Cargando…
Two-Wired Active Spring-Loaded Dry Electrodes for EEG Measurements
Dry contact electrode-based EEG acquisition is one of the easiest ways to obtain neural information from the human brain, providing many advantages such as rapid installation, and enhanced wearability. However, high contact impedance due to insufficient electrical coupling at the electrode-scalp int...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6833060/ https://www.ncbi.nlm.nih.gov/pubmed/31640169 http://dx.doi.org/10.3390/s19204572 |
_version_ | 1783466291636469760 |
---|---|
author | Lee, Seungchan Shin, Younghak Kumar, Anil Kim, Kiseon Lee, Heung-No |
author_facet | Lee, Seungchan Shin, Younghak Kumar, Anil Kim, Kiseon Lee, Heung-No |
author_sort | Lee, Seungchan |
collection | PubMed |
description | Dry contact electrode-based EEG acquisition is one of the easiest ways to obtain neural information from the human brain, providing many advantages such as rapid installation, and enhanced wearability. However, high contact impedance due to insufficient electrical coupling at the electrode-scalp interface still remains a critical issue. In this paper, a two-wired active dry electrode system is proposed by combining finger-shaped spring-loaded probes and active buffer circuits. The shrinkable probes and bootstrap topology-based buffer circuitry provide reliable electrical coupling with an uneven and hairy scalp and effective input impedance conversion along with low input capacitance. Through analysis of the equivalent circuit model, the proposed electrode was carefully designed by employing off-the-shelf discrete components and a low-noise zero-drift amplifier. Several electrical evaluations such as noise spectral density measurements and input capacitance estimation were performed together with simple experiments for alpha rhythm detection. The experimental results showed that the proposed electrode is capable of clear detection for the alpha rhythm activation, with excellent electrical characteristics such as low-noise of 1.131 μV(RMS) and 32.3% reduction of input capacitance. |
format | Online Article Text |
id | pubmed-6833060 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68330602019-11-25 Two-Wired Active Spring-Loaded Dry Electrodes for EEG Measurements Lee, Seungchan Shin, Younghak Kumar, Anil Kim, Kiseon Lee, Heung-No Sensors (Basel) Article Dry contact electrode-based EEG acquisition is one of the easiest ways to obtain neural information from the human brain, providing many advantages such as rapid installation, and enhanced wearability. However, high contact impedance due to insufficient electrical coupling at the electrode-scalp interface still remains a critical issue. In this paper, a two-wired active dry electrode system is proposed by combining finger-shaped spring-loaded probes and active buffer circuits. The shrinkable probes and bootstrap topology-based buffer circuitry provide reliable electrical coupling with an uneven and hairy scalp and effective input impedance conversion along with low input capacitance. Through analysis of the equivalent circuit model, the proposed electrode was carefully designed by employing off-the-shelf discrete components and a low-noise zero-drift amplifier. Several electrical evaluations such as noise spectral density measurements and input capacitance estimation were performed together with simple experiments for alpha rhythm detection. The experimental results showed that the proposed electrode is capable of clear detection for the alpha rhythm activation, with excellent electrical characteristics such as low-noise of 1.131 μV(RMS) and 32.3% reduction of input capacitance. MDPI 2019-10-21 /pmc/articles/PMC6833060/ /pubmed/31640169 http://dx.doi.org/10.3390/s19204572 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lee, Seungchan Shin, Younghak Kumar, Anil Kim, Kiseon Lee, Heung-No Two-Wired Active Spring-Loaded Dry Electrodes for EEG Measurements |
title | Two-Wired Active Spring-Loaded Dry Electrodes for EEG Measurements |
title_full | Two-Wired Active Spring-Loaded Dry Electrodes for EEG Measurements |
title_fullStr | Two-Wired Active Spring-Loaded Dry Electrodes for EEG Measurements |
title_full_unstemmed | Two-Wired Active Spring-Loaded Dry Electrodes for EEG Measurements |
title_short | Two-Wired Active Spring-Loaded Dry Electrodes for EEG Measurements |
title_sort | two-wired active spring-loaded dry electrodes for eeg measurements |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6833060/ https://www.ncbi.nlm.nih.gov/pubmed/31640169 http://dx.doi.org/10.3390/s19204572 |
work_keys_str_mv | AT leeseungchan twowiredactivespringloadeddryelectrodesforeegmeasurements AT shinyounghak twowiredactivespringloadeddryelectrodesforeegmeasurements AT kumaranil twowiredactivespringloadeddryelectrodesforeegmeasurements AT kimkiseon twowiredactivespringloadeddryelectrodesforeegmeasurements AT leeheungno twowiredactivespringloadeddryelectrodesforeegmeasurements |