Cargando…
Exploring Deep Physiological Models for Nociceptive Pain Recognition
Standard feature engineering involves manually designing measurable descriptors based on some expert knowledge in the domain of application, followed by the selection of the best performing set of designed features for the subsequent optimisation of an inference model. Several studies have shown tha...
Autores principales: | Thiam, Patrick, Bellmann, Peter, Kestler, Hans A., Schwenker, Friedhelm |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6833075/ https://www.ncbi.nlm.nih.gov/pubmed/31627305 http://dx.doi.org/10.3390/s19204503 |
Ejemplares similares
-
Two-Stream Attention Network for Pain Recognition from Video Sequences
por: Thiam, Patrick, et al.
Publicado: (2020) -
Multi-Modal Pain Intensity Assessment Based on Physiological Signals: A Deep Learning Perspective
por: Thiam, Patrick, et al.
Publicado: (2021) -
Learnability of the Boolean Innerproduct in Deep Neural Networks
por: Erdal, Mehmet, et al.
Publicado: (2022) -
Ensemble of Deep Learning Models for Sleep Apnea Detection: An Experimental Study
por: Mukherjee, Debadyuti, et al.
Publicado: (2021) -
Nociceptive pain and anxiety in equines: Physiological and behavioral alterations
por: Hernández-Avalos, I., et al.
Publicado: (2021)