Cargando…

A Physical Model-Based Observer Framework for Nonlinear Constrained State Estimation Applied to Battery State Estimation

Future electrified autonomous vehicles demand higly accurate knowledge of their system states to guarantee a high-fidelity and reliable control. This constitutes a challenging task—firstly, due to rising complexity and operational safeness, and secondly, due to the need for embedded service oriented...

Descripción completa

Detalles Bibliográficos
Autor principal: Brembeck, Jonathan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6833097/
https://www.ncbi.nlm.nih.gov/pubmed/31614570
http://dx.doi.org/10.3390/s19204402
Descripción
Sumario:Future electrified autonomous vehicles demand higly accurate knowledge of their system states to guarantee a high-fidelity and reliable control. This constitutes a challenging task—firstly, due to rising complexity and operational safeness, and secondly, due to the need for embedded service oriented architecture which demands a continuous development of new functionalities. Based on this, a novel model based Kalman filter framework is outlined in this publication, which enables the automatic incorporation of multiphysical Modelica models into discrete-time estimation algorithms. Additionally, these estimation algorithms are extended with nonlinear inequality constraint handling functionalities. The proposed framework is applied to a constrained nonlinear state of charge lithium-ion cell observer and is validated with experimental data.