Cargando…

Nucleotide excision repair genes shaping embryonic development

Nucleotide excision repair (NER) is a highly conserved mechanism to remove helix-distorting DNA lesions. A major substrate for NER is DNA damage caused by environmental genotoxins, most notably ultraviolet radiation. Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy are three human di...

Descripción completa

Detalles Bibliográficos
Autores principales: Araújo, Sofia J., Kuraoka, Isao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6833223/
https://www.ncbi.nlm.nih.gov/pubmed/31662099
http://dx.doi.org/10.1098/rsob.190166
Descripción
Sumario:Nucleotide excision repair (NER) is a highly conserved mechanism to remove helix-distorting DNA lesions. A major substrate for NER is DNA damage caused by environmental genotoxins, most notably ultraviolet radiation. Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy are three human disorders caused by inherited defects in NER. The symptoms and severity of these diseases vary dramatically, ranging from profound developmental delay to cancer predisposition and accelerated ageing. All three syndromes include developmental abnormalities, indicating an important role for optimal transcription and for NER in protecting against spontaneous DNA damage during embryonic development. Here, we review the current knowledge on genes that function in NER that also affect embryonic development, in particular the development of a fully functional nervous system.