Cargando…
Generation of Fad2 and Fad3 transgenic mice that produce n-6 and n-3 polyunsaturated fatty acids
Linoleic acid (18 : 2, n-6) and α-linolenic acid (18 : 3, n-3) are polyunsaturated fatty acids (PUFAs), which are essential for mammalian health, development and growth. However, the majority of mammals, including humans, are incapable of synthesizing n-6 and n-3 PUFAs. Mammals must obtain n-6 and n...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6833225/ https://www.ncbi.nlm.nih.gov/pubmed/31640475 http://dx.doi.org/10.1098/rsob.190140 |
Sumario: | Linoleic acid (18 : 2, n-6) and α-linolenic acid (18 : 3, n-3) are polyunsaturated fatty acids (PUFAs), which are essential for mammalian health, development and growth. However, the majority of mammals, including humans, are incapable of synthesizing n-6 and n-3 PUFAs. Mammals must obtain n-6 and n-3 PUFAs from their diet. Fatty acid desaturase (Fad) plays a critical role in plant PUFA biosynthesis. Therefore, we generated plant-derived Fad3 single and Fad2–Fad3 double transgenic mice. Compared with wild-type mice, we found that PUFA levels were greatly increased in the single and double transgenic mice by measuring PUFA levels. Moreover, the concentration of n-6 and n-3 PUFAs in the Fad2–Fad3 double transgenic mice were greater than in the Fad3 single transgenic mice. These results demonstrate that the plant-derived Fad2 and Fad3 genes can be expressed in mammals. To clarify the mechanism for Fad2 and Fad3 genes in transgenic mice, we measured the PUFAs synthesis-related genes. Compared with wild-type mice, these Fad transgenic mice have their own n-3 and n-6 PUFAs biosynthetic pathways. Thus, we have established a simple and efficient method for in vivo synthesis of PUFAs. |
---|