Cargando…

The statistics of how natural images drive the responses of neurons

To model the responses of neurons in the early visual system, at least three basic components are required: a receptive field, a normalization term, and a specification of encoding noise. Here, we examine how the receptive field, the normalization factor, and the encoding noise affect the drive to m...

Descripción completa

Detalles Bibliográficos
Autores principales: Iyer, Arvind, Burge, Johannes
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6833984/
https://www.ncbi.nlm.nih.gov/pubmed/31689717
http://dx.doi.org/10.1167/19.13.4
Descripción
Sumario:To model the responses of neurons in the early visual system, at least three basic components are required: a receptive field, a normalization term, and a specification of encoding noise. Here, we examine how the receptive field, the normalization factor, and the encoding noise affect the drive to model-neuron responses when stimulated with natural images. We show that when these components are modeled appropriately, the response drives elicited by natural stimuli are Gaussian-distributed and scale invariant, and very nearly maximize the sensitivity (d′) for natural-image discrimination. We discuss the statistical models of natural stimuli that can account for these response statistics, and we show how some commonly used modeling practices may distort these results. Finally, we show that normalization can equalize important properties of neural response across different stimulus types. Specifically, narrowband (stimulus- and feature-specific) normalization causes model neurons to yield Gaussian response-drive statistics when stimulated with natural stimuli, 1/f noise stimuli, and white-noise stimuli. The current work makes recommendations for best practices and lays a foundation, grounded in the response statistics to natural stimuli, upon which to build principled models of more complex visual tasks.