Cargando…

Synchronization transitions caused by time-varying coupling functions

Interacting dynamical systems are widespread in nature. The influence that one such system exerts on another is described by a coupling function; and the coupling functions extracted from the time-series of interacting dynamical systems are often found to be time-varying. Although much effort has be...

Descripción completa

Detalles Bibliográficos
Autores principales: Hagos, Zeray, Stankovski, Tomislav, Newman, Julian, Pereira, Tiago, McClintock, Peter V. E., Stefanovska, Aneta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834000/
https://www.ncbi.nlm.nih.gov/pubmed/31656137
http://dx.doi.org/10.1098/rsta.2019.0275
Descripción
Sumario:Interacting dynamical systems are widespread in nature. The influence that one such system exerts on another is described by a coupling function; and the coupling functions extracted from the time-series of interacting dynamical systems are often found to be time-varying. Although much effort has been devoted to the analysis of coupling functions, the influence of time-variability on the associated dynamics remains largely unexplored. Motivated especially by coupling functions in biology, including the cardiorespiratory and neural delta-alpha coupling functions, this paper offers a contribution to the understanding of effects due to time-varying interactions. Through both numerics and mathematically rigorous theoretical consideration, we show that for time-variable coupling functions with time-independent net coupling strength, transitions into and out of phase- synchronization can occur, even though the frozen coupling functions determine phase-synchronization solely by virtue of their net coupling strength. Thus the information about interactions provided by the shape of coupling functions plays a greater role in determining behaviour when these coupling functions are time-variable. This article is part of the theme issue ‘Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences’.