Cargando…
Achieving Rapid Blood Pressure Control With Digital Therapeutics: Retrospective Cohort and Machine Learning Study
BACKGROUND: Behavioral therapies, such as electronic counseling and self-monitoring dispensed through mobile apps, have been shown to improve blood pressure, but the results vary and long-term engagement is a challenge. Machine learning is a rapidly advancing discipline that can be used to generate...
Autores principales: | Guthrie, Nicole L, Berman, Mark A, Edwards, Katherine L, Appelbaum, Kevin J, Dey, Sourav, Carpenter, Jason, Eisenberg, David M, Katz, David L |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834235/ https://www.ncbi.nlm.nih.gov/pubmed/31758792 http://dx.doi.org/10.2196/13030 |
Ejemplares similares
-
Emergence of digital biomarkers to predict and modify treatment efficacy: machine learning study
por: Guthrie, Nicole L, et al.
Publicado: (2019) -
Change in Glycemic Control With Use of a Digital Therapeutic in Adults With Type 2 Diabetes: Cohort Study
por: Berman, Mark A, et al.
Publicado: (2018) -
SAT-LB120 A Software Application Delivering Behavioral Therapy Improved Glycemic Control in Adults With Type 2 Diabetes
por: Guthrie, Nicole L, et al.
Publicado: (2020) -
Estimating the Impact of Novel Digital Therapeutics in Type 2 Diabetes and Hypertension: Health Economic Analysis
por: Nordyke, Robert J, et al.
Publicado: (2019) -
Randomized, Controlled Trial of a Digital Behavioral Therapeutic Application to Improve Glycemic Control in Adults With Type 2 Diabetes
por: Hsia, Judith, et al.
Publicado: (2022)