Cargando…
Mechanical stiffness of reconstituted actin patches correlates tightly with endocytosis efficiency
Clathrin-mediated endocytosis involves the sequential assembly of more than 60 proteins at the plasma membrane. An important fraction of these proteins regulates the assembly of an actin-related protein 2/3 (Arp2/3)-branched actin network, which is essential to generate the force during membrane inv...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834286/ https://www.ncbi.nlm.nih.gov/pubmed/31652255 http://dx.doi.org/10.1371/journal.pbio.3000500 |
Sumario: | Clathrin-mediated endocytosis involves the sequential assembly of more than 60 proteins at the plasma membrane. An important fraction of these proteins regulates the assembly of an actin-related protein 2/3 (Arp2/3)-branched actin network, which is essential to generate the force during membrane invagination. We performed, on wild-type (WT) yeast and mutant strains lacking putative actin crosslinkers, a side-by-side comparison of in vivo endocytic phenotypes and in vitro rigidity measurements of reconstituted actin patches. We found a clear correlation between softer actin networks and a decreased efficiency of endocytosis. Our observations support a chain-of-consequences model in which loss of actin crosslinking softens Arp2/3-branched actin networks, directly limiting the transmission of the force. Additionally, the lifetime of failed endocytic patches increases, leading to a larger number of patches and a reduced pool of polymerizable actin, which slows down actin assembly and further impairs endocytosis. |
---|