Cargando…

Increased calcium channel in the lamina propria of aging rat

The alterations of the extracellular matrix (ECM) in lamina propria of the vocal folds are important changes that are associated with decreased vibrations and increased stiffness in aging vocal fold. The aim of this study was to investigate the differences in gene expression of lamina propria using...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Ji Min, Heo, Hyoung-Sam, Shin, Sung-Chan, Kwon, Hyun-Keun, Lee, Jin-Choon, Sung, Eui-Suk, Kim, Hyung-Sik, Park, Gi Cheol, Lee, Byung-Joo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834399/
https://www.ncbi.nlm.nih.gov/pubmed/31682233
http://dx.doi.org/10.18632/aging.102284
Descripción
Sumario:The alterations of the extracellular matrix (ECM) in lamina propria of the vocal folds are important changes that are associated with decreased vibrations and increased stiffness in aging vocal fold. The aim of this study was to investigate the differences in gene expression of lamina propria using next generation sequencing (NGS) in young and aging rats and to identify genes that affect aging-related ECM changes for developing novel therapeutic target molecule. Among the 40 genes suggested in the NGS analysis, voltage-gated calcium channels (VGCC) subunit alpha1 S (CACNA1S), VGCC auxiliary subunit beta 1 (CACNB1), and VGCC auxiliary subunit gamma 1 (CACNG1) were increased in the lamina propria of the old rats compared to the young rats. The synthesis of collagen I and III in hVFFs decreased after si-CACNA1S and verapamil treatment. The expression and activity of matrix metalloproteinases (MMP)-1 and -8 were increased in hVFFs after the treatment of verapamil. However, there was no change in the expression of MMP-2 and -9. These results suggest that some calcium channels may be related with the alteration of aging-related ECM in vocal folds. Calcium channel has promising potential as a novel therapeutic target for the remodeling ECM of aging lamina propria.