Cargando…
Extracting Reproducible Time-Resolved Resting State Networks Using Dynamic Mode Decomposition
Resting state networks (RSNs) extracted from functional magnetic resonance imaging (fMRI) scans are believed to reflect the intrinsic organization and network structure of brain regions. Most traditional methods for computing RSNs typically assume these functional networks are static throughout the...
Autores principales: | Kunert-Graf, James M., Eschenburg, Kristian M., Galas, David J., Kutz, J. Nathan, Rane, Swati D., Brunton, Bingni W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834549/ https://www.ncbi.nlm.nih.gov/pubmed/31736734 http://dx.doi.org/10.3389/fncom.2019.00075 |
Ejemplares similares
-
Partial Information Decomposition and the Information Delta: A Geometric Unification Disentangling Non-Pairwise Information
por: Kunert-Graf, James, et al.
Publicado: (2020) -
Non-Stationary Dynamic Mode Decomposition
por: FERRÉ, JOHN, et al.
Publicado: (2023) -
Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control
por: Brunton, Steven L., et al.
Publicado: (2016) -
Structured time-delay models for dynamical systems with connections to Frenet–Serret frame
por: Hirsh, Seth M., et al.
Publicado: (2021) -
PyNumDiff: A Python package for numerical differentiation of noisy time-series data
por: Van Breugel, Floris, et al.
Publicado: (2022)