Cargando…
Tilting dependence and anisotropy of anomaly-related magnetoconductance in type-II Weyl semimetals
We theoretically study chiral magnetic effect in type-II Weyl semimetals based on a concise formalism for the magnetoconductance in the semiclassical limit. Using the formula, we find that the anomaly-related current is generally dominated by the contribution from the Weyl nodes when the Fermi level...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834610/ https://www.ncbi.nlm.nih.gov/pubmed/31695066 http://dx.doi.org/10.1038/s41598-019-51846-x |
Sumario: | We theoretically study chiral magnetic effect in type-II Weyl semimetals based on a concise formalism for the magnetoconductance in the semiclassical limit. Using the formula, we find that the anomaly-related current is generally dominated by the contribution from the Weyl nodes when the Fermi level is sufficiently close to the nodes. This is related to the fact that the current is proportional to the square of the Berry curvature, which enhances the contribution from the electrons around the Weyl nodes. The increase and the anisotropy of magnetoconductance induced by the tilting is also explained in a comprehensive way. |
---|