Cargando…

Virtual-photon-mediated spin-qubit–transmon coupling

Spin qubits and superconducting qubits are among the promising candidates for realizing a solid state quantum computer. For the implementation of a hybrid architecture which can profit from the advantages of either approach, a coherent link is necessary that integrates and controllably couples both...

Descripción completa

Detalles Bibliográficos
Autores principales: Landig, A. J., Koski, J. V., Scarlino, P., Müller, C., Abadillo-Uriel, J. C., Kratochwil, B., Reichl, C., Wegscheider, W., Coppersmith, S. N., Friesen, Mark, Wallraff, A., Ihn, T., Ensslin, K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834620/
https://www.ncbi.nlm.nih.gov/pubmed/31695044
http://dx.doi.org/10.1038/s41467-019-13000-z
_version_ 1783466513006592000
author Landig, A. J.
Koski, J. V.
Scarlino, P.
Müller, C.
Abadillo-Uriel, J. C.
Kratochwil, B.
Reichl, C.
Wegscheider, W.
Coppersmith, S. N.
Friesen, Mark
Wallraff, A.
Ihn, T.
Ensslin, K.
author_facet Landig, A. J.
Koski, J. V.
Scarlino, P.
Müller, C.
Abadillo-Uriel, J. C.
Kratochwil, B.
Reichl, C.
Wegscheider, W.
Coppersmith, S. N.
Friesen, Mark
Wallraff, A.
Ihn, T.
Ensslin, K.
author_sort Landig, A. J.
collection PubMed
description Spin qubits and superconducting qubits are among the promising candidates for realizing a solid state quantum computer. For the implementation of a hybrid architecture which can profit from the advantages of either approach, a coherent link is necessary that integrates and controllably couples both qubit types on the same chip over a distance that is several orders of magnitude longer than the physical size of the spin qubit. We realize such a link with a frequency-tunable high impedance SQUID array resonator. The spin qubit is a resonant exchange qubit hosted in a GaAs triple quantum dot. It can be operated at zero magnetic field, allowing it to coexist with superconducting qubits on the same chip. We spectroscopically observe coherent interaction between the resonant exchange qubit and a transmon qubit in both resonant and dispersive regimes, where the interaction is mediated either by real or virtual resonator photons.
format Online
Article
Text
id pubmed-6834620
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-68346202019-11-08 Virtual-photon-mediated spin-qubit–transmon coupling Landig, A. J. Koski, J. V. Scarlino, P. Müller, C. Abadillo-Uriel, J. C. Kratochwil, B. Reichl, C. Wegscheider, W. Coppersmith, S. N. Friesen, Mark Wallraff, A. Ihn, T. Ensslin, K. Nat Commun Article Spin qubits and superconducting qubits are among the promising candidates for realizing a solid state quantum computer. For the implementation of a hybrid architecture which can profit from the advantages of either approach, a coherent link is necessary that integrates and controllably couples both qubit types on the same chip over a distance that is several orders of magnitude longer than the physical size of the spin qubit. We realize such a link with a frequency-tunable high impedance SQUID array resonator. The spin qubit is a resonant exchange qubit hosted in a GaAs triple quantum dot. It can be operated at zero magnetic field, allowing it to coexist with superconducting qubits on the same chip. We spectroscopically observe coherent interaction between the resonant exchange qubit and a transmon qubit in both resonant and dispersive regimes, where the interaction is mediated either by real or virtual resonator photons. Nature Publishing Group UK 2019-11-06 /pmc/articles/PMC6834620/ /pubmed/31695044 http://dx.doi.org/10.1038/s41467-019-13000-z Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Landig, A. J.
Koski, J. V.
Scarlino, P.
Müller, C.
Abadillo-Uriel, J. C.
Kratochwil, B.
Reichl, C.
Wegscheider, W.
Coppersmith, S. N.
Friesen, Mark
Wallraff, A.
Ihn, T.
Ensslin, K.
Virtual-photon-mediated spin-qubit–transmon coupling
title Virtual-photon-mediated spin-qubit–transmon coupling
title_full Virtual-photon-mediated spin-qubit–transmon coupling
title_fullStr Virtual-photon-mediated spin-qubit–transmon coupling
title_full_unstemmed Virtual-photon-mediated spin-qubit–transmon coupling
title_short Virtual-photon-mediated spin-qubit–transmon coupling
title_sort virtual-photon-mediated spin-qubit–transmon coupling
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834620/
https://www.ncbi.nlm.nih.gov/pubmed/31695044
http://dx.doi.org/10.1038/s41467-019-13000-z
work_keys_str_mv AT landigaj virtualphotonmediatedspinqubittransmoncoupling
AT koskijv virtualphotonmediatedspinqubittransmoncoupling
AT scarlinop virtualphotonmediatedspinqubittransmoncoupling
AT mullerc virtualphotonmediatedspinqubittransmoncoupling
AT abadillourieljc virtualphotonmediatedspinqubittransmoncoupling
AT kratochwilb virtualphotonmediatedspinqubittransmoncoupling
AT reichlc virtualphotonmediatedspinqubittransmoncoupling
AT wegscheiderw virtualphotonmediatedspinqubittransmoncoupling
AT coppersmithsn virtualphotonmediatedspinqubittransmoncoupling
AT friesenmark virtualphotonmediatedspinqubittransmoncoupling
AT wallraffa virtualphotonmediatedspinqubittransmoncoupling
AT ihnt virtualphotonmediatedspinqubittransmoncoupling
AT ensslink virtualphotonmediatedspinqubittransmoncoupling