Cargando…

Isolation of endophytic fungi and screening of Huperzine A–producing fungus from Huperzia serrata in Vietnam

Huperzine A (HupA), a natural Lycopodium alkaloid derived from Huperzia serrata (Thunb. ex Murray) Trev. plants, is a highly active acetylcholinesterase inhibitor and a key compound used for treating Alzheimer’s disease (AD). Recently, HupA has been reported in various endophytic fungi isolated from...

Descripción completa

Detalles Bibliográficos
Autores principales: Thi Minh Le, Thanh, Thi Hong Hoang, Anh, Thi Bich Le, Thuy, Thi Bich Vo, Thuy, Van Quyen, Dong, Hoang Chu, Ha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834622/
https://www.ncbi.nlm.nih.gov/pubmed/31695105
http://dx.doi.org/10.1038/s41598-019-52481-2
Descripción
Sumario:Huperzine A (HupA), a natural Lycopodium alkaloid derived from Huperzia serrata (Thunb. ex Murray) Trev. plants, is a highly active acetylcholinesterase inhibitor and a key compound used for treating Alzheimer’s disease (AD). Recently, HupA has been reported in various endophytic fungi isolated from H. serrata. In the present study, 153 endophytic fungi were isolated from healthy tissues of H. serrata collected from natural populations in Lam Dong province of Central Vietnam. The endophytic fungi were identified based on morphological characteristics and Internal Transcribed Spacer sequences. Among them, 34 strains were classified into seven genera belonging to Ascomycota, including Alternaria, Fusarium, Trichoderma, Penicillium, Paecilomyces, and Phoma, and eight strains belonging to the genus Mucor (Zygomycota). The other strains remained unidentified. According to the results of thin-layer chromatography and high-performance liquid chromatography, only one of the 153 strains, Penicillium sp. LDL4.4, could produce HupA, with a yield 1.38 mg l(−1) (168.9 µg g(−1) dried mycelium) when cultured in potato dextrose broth, which was considerably higher than that of other reported endophytic fungi. Such a fungus is a promising candidate and alternative to presently available HupA production techniques for treating AD and preventing further memory decline.