Cargando…

Highly sensitive immunosensing platform for one-step detection of genetically modified crops

The wide cultivation of genetically modified (GM) insect-resistant crops has raised concerns on the risks to the eco-environment resulting from a release of Cry proteins. Therefore, it is vital to develop a method for the quantification of GM crops. Herein, A highly sensitive immunosensing platform...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Hongfei, Wen, Luke, Hua, Wei, Tian, Jing, Lin, Yongjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834675/
https://www.ncbi.nlm.nih.gov/pubmed/31695115
http://dx.doi.org/10.1038/s41598-019-52651-2
Descripción
Sumario:The wide cultivation of genetically modified (GM) insect-resistant crops has raised concerns on the risks to the eco-environment resulting from a release of Cry proteins. Therefore, it is vital to develop a method for the quantification of GM crops. Herein, A highly sensitive immunosensing platform has been developed for both colorimetric and chemiluminescent (CL) detection of Cry 1Ab using dual-functionalized gold nanoparticles (AuNPs) as signal amplification nanoprobes for the first time. In this work, anti-Cry 1Ab monoclonal antibody and horseradish peroxidase (HRP) are simultaneously functionalized on the surface of AuNPs with an exceptionally simple synthesis method. Combined with immunomagnetic separation, this immunosensing platform based on colorimetric method could detect Cry 1Ab in one step in a linear range from 1.0 to 40 ng mL(−1) within 1.5 h, with a limit of detection of 0.50 ng mL(−1). The sensitivity of fabricated nanoprobes was 15.3 times higher than that using commercial HRP-conjugated antibody. Meanwhile, the fabricated nanoprobes coupled with CL detection was successfully applied for Cry 1Ab detection with a minimum detection concentration of 0.050 ng mL(−1) within a linear range of 0.10–20 ng mL(−1). The proposed approach was validated with genuine GM crops, and the results showed a good correlation coefficient of 0.9906 compared to those of a commercial ELISA kit. Compared with ELISA, the developed immunosensing platform significantly simplified the assay procedure and shortened the analytical time, thus providing a new platform for the detection of genetically modified crops with high sensitivity, rapidity and simplicity.