Cargando…
A Machine Learning Method for Identifying Critical Interactions Between Gene Pairs in Alzheimer's Disease Prediction
Background: Alzheimer's disease (AD) is the most common type of dementia. Scientists have discovered that the causes of AD may include a combination of genetic, lifestyle, and environmental factors, but the exact cause has not yet been elucidated. Effective strategies to prevent and treat AD th...
Autores principales: | Chen, Hao, He, Yong, Ji, Jiadong, Shi, Yufeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834789/ https://www.ncbi.nlm.nih.gov/pubmed/31736866 http://dx.doi.org/10.3389/fneur.2019.01162 |
Ejemplares similares
-
Machine learning approach for hemorrhagic transformation prediction: Capturing predictors' interaction
por: Elsaid, Ahmed F., et al.
Publicado: (2022) -
Using machine learning to identify gene interaction networks associated with breast cancer
por: Liu, Liyuan, et al.
Publicado: (2022) -
Comparison of Transfer Learning and Conventional Machine Learning Applied to Structural Brain MRI for the Early Diagnosis and Prognosis of Alzheimer's Disease
por: Nanni, Loris, et al.
Publicado: (2020) -
Machine learning in the prediction of post-stroke cognitive impairment: a systematic review and meta-analysis
por: Li, XiaoSheng, et al.
Publicado: (2023) -
Constructing Prediction Models for Freezing of Gait by Nomogram and Machine Learning: A Longitudinal Study
por: Xu, Kun, et al.
Publicado: (2021)