Cargando…

Cerebral edema detection in vivo after middle cerebral artery occlusion using swept-source optical coherence tomography

Cerebral edema is a severe complication of ischemic cerebrovascular disease, which can lead to microcirculation compression resulting in additional ischemic damage. Real-time and continuous in vivo imaging techniques for edema detection are of great significance to basic research on cerebral edema....

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Jian, Li, Yan, Yu, Yao, Yuan, Xincheng, Lv, Hongyu, Zhao, Yuqian, Ma, Zhenhe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society of Photo-Optical Instrumentation Engineers 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835117/
https://www.ncbi.nlm.nih.gov/pubmed/31720312
http://dx.doi.org/10.1117/1.NPh.6.4.045007
Descripción
Sumario:Cerebral edema is a severe complication of ischemic cerebrovascular disease, which can lead to microcirculation compression resulting in additional ischemic damage. Real-time and continuous in vivo imaging techniques for edema detection are of great significance to basic research on cerebral edema. We attempted to monitor the cerebral edema status in rats with middle cerebral artery occlusion (MCAO) over time, using a wide field-of-view swept-source optical coherence tomography (SS-OCT) system. Optical attenuation coefficients (OACs) were calculated by an optimized depth-resolved estimation method, and en face OAC maps covering the whole cortex were obtained. Then, the tissue affected by edema was segmented from the OAC maps, and the cortical area affected by edema was estimated. Both magnetic resonance image (MRI) and brain water content measurements were used to verify the presence of cerebral edema. The results showed that the average OAC of the ischemic area gradually decreased as cerebral edema progressed, and the edema area detected by SS-OCT had high similarity in position and shape to that obtained by MRI. This work extends the application of OCT and provides an option for detecting cerebral edema in vivo after ischemic stroke.