Cargando…
Occurrence and Genomic Characterization of Two MCR-1-Producing Escherichia coli Isolates from the Same Mink Farmer
The spread of colistin resistance gene mcr-1 at the animal-human interface remains largely unknown. This work aimed to investigate the molecular characteristics of two extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli strains with mcr-1, i.e., strains H8 and H9, isolated from the same...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835210/ https://www.ncbi.nlm.nih.gov/pubmed/31694897 http://dx.doi.org/10.1128/mSphere.00602-19 |
Sumario: | The spread of colistin resistance gene mcr-1 at the animal-human interface remains largely unknown. This work aimed to investigate the molecular characteristics of two extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli strains with mcr-1, i.e., strains H8 and H9, isolated from the same mink farmer. In this study, five mcr-positive E. coli strains were isolated from the mink farm. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) identified two genetically unrelated MCR-1 producers (H8 and H9) from the same farmer and two clonally related MCR-1-positive isolates (M5 and M6) from two different mink samples. Additionally, a mcr-1 variant, designated mcr-1.12, was identified in isolate M4. MIC determination revealed that all of the MCR-producing strains exhibited multiresistant phenotypes but showed susceptibility to imipenem, meropenem, amikacin, and tigecycline. Replicon typing showed that mcr-1 was associated with IncHI2 plasmids in 4 cases, while the gene was located on an IncI2 plasmid in 1 case. PacBio sequencing and plasmid analysis confirmed that the mcr-1 gene was located on an ∼204-kb IncHI2 plasmid in H8 and was carried by an ∼61-kb IncI2 plasmid in H9. To our knowledge, this work represents the first report of the occurrence of MCR-producing isolates from mink. Moreover, our report also describes the coexistence of two different MCR-1 producers in the same farmer. It highlights that fur farms can be reservoirs of mcr-1 genes. The identification of mcr-carrying plasmids on a fur farm is of potential public health importance, as it suggests that mcr is widespread in the animal husbandry industry. IMPORTANCE Colistin resistance is a real threat for both human and animal health. The mobile colistin resistance gene mcr has contributed to the persistence and transmission of colistin resistance at the interfaces of animals, humans, and ecosystems. Although mcr genes have usually been recovered from food animals, patients, and healthy humans, transmission of mcr genes at the animal-human interface remains largely unknown. This was the first study to isolate and characterize MCR-producing isolates from mink, as well as to report the coexistence of two different MCR-1 producers in the same farmer. The characterization and analysis of two MCR-1-producing E. coli isolates may have important implications for comprehension of the transmission dynamics of these bacteria. We emphasize the importance of improved multisectorial surveillance of colistin-resistant E. coli in this region. |
---|