Cargando…

Macroporous Oil-Sorbents with a High Absorption Capacity and High-Temperature Tolerance Prepared Through Cryo-Polymerization

The facile preparation and admirable performance of macro-porous poly(lauryl acrylate)-based oil-sorbents for organic solvents and oils are reported in this manuscript. Cryo-polymerizations of lauryl acrylate (LA) with ethylene glycol dimethacrylate (EGDMA) as the cross-linker were carried out at te...

Descripción completa

Detalles Bibliográficos
Autores principales: Haleem, Abdul, Wang, Jia-Yun, Li, Hui-Juan, Hu, Chuan-Shan, Li, Xi-Chuan, He, Wei-Dong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835346/
https://www.ncbi.nlm.nih.gov/pubmed/31591363
http://dx.doi.org/10.3390/polym11101620
Descripción
Sumario:The facile preparation and admirable performance of macro-porous poly(lauryl acrylate)-based oil-sorbents for organic solvents and oils are reported in this manuscript. Cryo-polymerizations of lauryl acrylate (LA) with ethylene glycol dimethacrylate (EGDMA) as the cross-linker were carried out at temperatures below the freezing point of the polymerization mixture. The polymerization medium and pore-forming agent was 1,4-dioxane. The influences of the total monomer concentration, EGDMA content and cryo-polymerization temperature on the structure of the obtained P(LA-co-EGDMA) cryogels were investigated with the techniques of Fourier transform infrared spectroscopy, scanning electron microscopy, contact angle measurement and thermo-gravimetric analysis. Through the modulation of the crosslinking density and porosity of these cryogels, the P(LA-co-EGDMA) oil-sorbents demonstrated a high absorption capacity for organic solvents and oils, recyclability and high-temperature tolerance. The absorption capacity reached 20–21 and 16–17 g/g for toluene and gasoline oil, respectively. Those fabricated sorbents survived high temperatures up to 150 °C without any change in absorption capacity as well as porosity. Considering the convenient synthesis process and absorption performance, the present work offers a remarkable opportunity to bring polymer cryogels to practical application in waste oil clean-up.