Cargando…
Chocolate Quality Assessment Based on Chemical Fingerprinting Using Near Infra-red and Machine Learning Modeling
Chocolates are the most common confectionery and most popular dessert and snack across the globe. The quality of chocolate plays a major role in sensory evaluation. In this study, a rapid and non-destructive method was developed to predict the quality of chocolate based on physicochemical data, and...
Autores principales: | Gunaratne, Thejani M., Gonzalez Viejo, Claudia, Gunaratne, Nadeesha M., Torrico, Damir D., Dunshea, Frank R., Fuentes, Sigfredo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835489/ https://www.ncbi.nlm.nih.gov/pubmed/31547064 http://dx.doi.org/10.3390/foods8100426 |
Ejemplares similares
-
Physiological Responses to Basic Tastes for Sensory Evaluation of Chocolate Using Biometric Techniques
por: Gunaratne, Thejani M., et al.
Publicado: (2019) -
Effects of packaging design on sensory liking and willingness to purchase: A study using novel chocolate packaging
por: Gunaratne, Nadeesha M., et al.
Publicado: (2019) -
Consumer Acceptability, Eye Fixation, and Physiological Responses: A Study of Novel and Familiar Chocolate Packaging Designs Using Eye-Tracking Devices
por: Gunaratne, Nadeesha M., et al.
Publicado: (2019) -
Non-Contact Heart Rate and Blood Pressure Estimations from Video Analysis and Machine Learning Modelling Applied to Food Sensory Responses: A Case Study for Chocolate
por: Gonzalez Viejo, Claudia, et al.
Publicado: (2018) -
Machine Learning Modeling of Wine Sensory Profiles and Color of Vertical Vintages of Pinot Noir Based on Chemical Fingerprinting, Weather and Management Data
por: Fuentes, Sigfredo, et al.
Publicado: (2020)