Cargando…

Metabolic Effects of Dietary Glycerol Supplementation in Muscle and Liver of European Seabass and Rainbow Trout by (1)H NMR Metabolomics

The sustainable growth of fish aquaculture will require the procurement of non-marine feed sources. Glycerol is a potential feed supplement whose metabolism may spare the catabolism of dietary amino acids, thereby extending the use of the feed protein to other physiological functions such as growth....

Descripción completa

Detalles Bibliográficos
Autores principales: Palma, Mariana, Tavares, Ludgero C., Rito, João, Henriques, Luís F., Silva, João G., Ozório, Rodrigo, Pardal, Miguel A., Magnoni, Leonardo J., Viegas, Ivan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835518/
https://www.ncbi.nlm.nih.gov/pubmed/31569727
http://dx.doi.org/10.3390/metabo9100202
Descripción
Sumario:The sustainable growth of fish aquaculture will require the procurement of non-marine feed sources. Glycerol is a potential feed supplement whose metabolism may spare the catabolism of dietary amino acids, thereby extending the use of the feed protein to other physiological functions such as growth. In the present study, the effects of dietary glycerol supplementation on the muscle and liver metabolomes of rainbow trout (Oncorhynchus mykiss) and European seabass (Dicentrarchus labrax) were evaluated. Fish juveniles were fed diets with 0%, 2.5%, and 5% glycerol. Muscle and liver aqueous fractions were extracted and (1)H NMR spectra were acquired. Metabolite profiles derived from the (1)H NMR signals were assessed using univariate and multivariate statistical analyses. The adenylate energy charge was determined in the muscle. For both species, the muscle metabolite profile showed more variability compared to that of the liver and was most perturbed by the 5.0% glycerol diet. For the liver metabolite profile, rainbow trout showed fewer differences compared to European seabass. No differences were observed in energy charge between experimental groups for either species. Thus, rainbow trout appeared to be less susceptible to tissue metabolite perturbations, compared to seabass, when the diet was supplemented with up to 5% glycerol.